© 2012 Yaakov Chaikin

Simplifying GWT RPC with
Open Source GWT-Tools RPC Service

(GWT 2.4 Version)

Originals of Slides and Source Code for Examples:
http://courses.coreserviets.com/Course-Materials/qwt.html

Customized Java EE Training: http://courses.coreservlets.com/
GWT, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2012 Yaakov Chaikin

mowre
SERVLETS and
JAVASERVER PAGES

core

SERVLETS and
JAVASERVER PAGES

MARTY HALL

JIARTY HALL - LAI ROWN

For live Ajax and GWT training, please see

courses at http://courses.coreservlets.com/.

Taught by the author of Core Serviets and JSP, More

Servlets and JSP, and this tutorial. Available at public

venues, or customized versions can be held on-site at
your organization.

+ Courses developed and taught by Marty Hall
— JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 6 or 7 programming, custom mix of topics
— Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, etc.) or survey several

* Courses developed and taught by coreservlets.com experts (edited by Marty)
— Spring, Hibernate/JPA, EJB3, GWT, Hadoop, SOAP-based and RESTful Web Services

Contact hall@coreserviets.com for details




Topics in This Section

Quick GWT RPC review
Motivation
Advantages/Disadvantages
Basic steps

Example

More examples
Alternatives

RPC Review: Big Idea

- Write regular methods on server;
don’t write servlet methods

— Methods take arbitrary arguments
* Not HttpServletRequest and HttpServletResponse

— Methods return arbitrary results
 Strings, arrays, lists, custom classes, etc.
- Call methods directly from client;
don’t make explicit HTTP requests
— Call server methods almost as though they were local

— Pass arbitrary arguments and get arbitrary results
» Custom form of serialization handles all the parsing




GWT-RPC Development Steps

Define main data service interface

— Implement RemoteService interface

— Define regular methods without explicit HTTP

— Use @RemoteServiceRelativePath to point at servlet
Define callback version of data service interface
— If main interface is FooService, define FooServiceAsync
Make data service servlet

— Extend RemoteServiceServlet, implement service interface
— Supply url-pattern in web.xml that matches relative path
Create service proxy

— Call GWT.create(YourServicelnterfaceName.class)
Define client-side callback objects

— With onSuccess and onFailure

Motivation behind RPC Service

Regular GWT RPC has too many
configuration steps every time you need to
define a new set of methods

Hard to integrate central exception handling

— E.g., if a particular type of exception occurs, I want to
always navigate to some view

— Without central exception handling, you have to hard
code this in every single AsyncCallback.onFailure
Any changes to existing methods are
somewhat cumbersome
— Always have to remember to update url-pattern, etc.

| want to set it up once and forget it!




Solution:
Command Design Pattern

« Command design pattern fits perfectly to
the Request/Response paradigm
— In the end, this is what GWT RPC is: request/response

 Issue a server request for data like a
command

- Server inspects the command type and
dispatches it to the appropriate command
handler

« Handler executes command and returns a
Response

RPC Service:
Summary of Features

Automatic discovery of handlers

Automatic discovery and autowiring of Spring
Framework enabled handlers

— E.g., allows autowiring of Data Access Objects (DAOs)

Multiple request commands can share a
response

— E.g., create new item and update item both will return
new/updated item data

Default implementation of AsyncCallback
— With a way to provide an application-wide exception handler
Annotation-based configuration

Only one GWT RPC URL to map
— Everything goes through that central URL




Configuration Steps

- Download rpc-service-xxx.jar from:
http://code.google.com/p/gwt-tools/downloads/list

* Place JAR in the WEB-INF/lib directory

— Depending on the type of Eclipse project you have, you
might have to tell Eclipse about the JAR (through project
properties — Java Build Path

* In web.xml, configure RPC Service serviet:

<servlet>
<servlet-name>rpc-service-servlet</servlet-name>
<servlet-class>

org.tbiqg.gwt. tools.rpcservice.server.RpcServiceServlet

</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>rpc-service-servlet</servlet-name>
<url-pattern>/contacts/rpc-service</url-pattern>

</servlet-mapping>

Configuration Steps (continued)

* In web.xml, configure auto-discovery of
RPC request handlers

— Two choices: package-based or Spring-based discovery
- Package-based discovery example:

<listener>
<listener-class>
org. ...discovery.DefaultRpcRequestRegistryInitializationListener

</listener-class>
Look for RPC request handlers in this package (or under)

</listener>
and register them.
<context-param>
<param-name>packagesToScan</param-name>
<param-value>

com.google.gwt.sample.contacts.server.rpc
</param-value>
</context-param>




Configuration Steps (continued)

* In web.xml, configure auto-discovery of
RPC request handlers

— Two choices: package-based or Spring-based discovery
- Spring-based discovery example:

<listener> Regular Spring Framework configuration for web modules.
<listener-class>
org.springframework.web.context/ ContextLoaderListener
</listener-class>
</listener>
<context-param>
<param-name>contextConfigLocagtion</param-name>
<param-value>classpath:/applicationContext.xml</param-value>
</context-param>

<listener> RPC Service listener must be configured after the Spring
Framework listener in web.xml.

<listener-class>
org. . .discovery.SpringRpcRequestRegistryInitializationListener

</listener-class>

/listener>

Using: Basic Steps

Create response class (in .client package)
— Implements RpcResponse

Create request class (in .client package)
— Implements RpcRequest<BlahResponse>

— Make sure request/response classes have zero arg
constructor
* Interfaces RpcRequest, RpcResponse already Serializable

Create handler class (outside .client pkg)
— Imlements RpcRequestHandler
— Implement its execute method

Setup and make the RPC call from client




Example: (retrieve contact)
GetContactResponse.java

public class GetContactResponse implements RpcResponse
{

private Contact contact; «—————Contactreturned from server.
public GetContactResponse () { } «——Required Zero-arg constructor.
public GetContactResponse (Contact contact) ({

this.contact = contact;

public Contact getContact() ({
return contact;

public void setContact(Contact contact) ({
this.contact = contact;

Example: (retrieve contact)
GetContactRequest.java

public class GetContactRequest
implements RpcRequest<GetContactResponse> {
private String contactId; X

Request is compile-time

public GetContactRequest() {} tied to the response!

public GetContactRequest(String contactId) ({

this.contactId = contactId; ‘\\\\\\
}

ID of contact to retrieve
from the server.

public String getContactId() ({
return contactlId;

public void setContactId(String contactId) {
this.contactId = contactId;

—




Example: (retrieve contact)
In SomePresenter.java

DefaultRpcAsyncCallback callback = new DefaultRpcAsyncCallback (
new DefaultApplicationExceptionHandler())
{

@Override

protected void handleResponse (RpcResponse response)

{

Pops up an alert with the exception.getMessage().

// Cast response to GetContactResponse

// (because of GWT compiler generics bug)

GetContactResponse getContactResponse =
(GetContactResponse) response;

contact = getContactResponse.getContact() ;

// Display retrieved contact
someTextWidget.setValue (contact.getFirstName()) ;
someTextWidget.setValue (contact.getLastName()) ;
someTextWidget.setValue (contact.getEmailAddress()) ;
}
}i

rpcService.execute (new GetContactRequest(id) , callback) ;

Example: (retrieve contact)
GetContactRequestHandler.java

@RpcHandler
public class GetContactRequestHandler implements
RpcRequestHandler<GetContactRequest, GetContactResponse> {

public GetContactResponse execute (GetContactRequest rpcRequest,
ServletExecutionContext context)
throws RpcServiceException {
// Retrieve contact with the given ID
ContactsStore store = ContactsStore.getContactsStore();
String contactlId = rpcRequest.getContactId() + "";
Contact contact = store.getContact (contactId) ;

// Wrap contact into an RPC response object and return response
GetContactResponse rpcResponse =

new GetContactResponse (contact) ;
return rpcResponse;

public Class<GetContactRequest> getCompatibleRpcRequestType () {
return GetContactRequest.class;




Fully Working Examples

« Check out all the source code with 3
example apps at:
http://code.google.com/p/gwt-tools/source/checkout

* Three example apps:

— Original Contacts app Google provide as an example, but
mavenized

— Same as above plus using place-service
* History handler framework
— Use only if stuck with GWT < 2.1
— Same as above plus using RPC Service with package
autodiscovery of RPC Handlers
— Same as above plus using RPC Service Spring-enabled
autodiscovery of RPC Handlers

Alternatives

- gwt-dispatch
— http://code.google.com/p/gwt-dispatch/
— Widely used
— Nice developer forum

- GWT RequestFactory
— Much more advanced but not as straightforward to use
— Has many more features like automatically creating
EntityProxy beans to reuse EJB 3.0 Entity beans directly
in GWT client code
* Google for other open source command-
pattern request/response GWT RPC
frameworks




© 2012 Yaakov Chaikin

Customized Java EE Training: http://courses.coreservlets.com/
GWT, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2012 Yaakov Chaikin

Questions?

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

Customized Java EE Training: http://courses.coreservlets.com/
GWT, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.




