
© 2012 Yaakov Chaikin

Customized Java EE Training: http://courses.coreservlets.com/
GWT, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Simplifying GWT RPC with
Open Source GWT-Tools RPC Service

(GWT 2.4 Version)

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/gwt.html

© 2012 Yaakov Chaikin

Customized Java EE Training: http://courses.coreservlets.com/
GWT, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Ajax and GWT training, please see
courses at http://courses.coreservlets.com/.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public
venues, or customized versions can be held on-site at

your organization.
• Courses developed and taught by Marty Hall

– JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 6 or 7 programming, custom mix of topics
– Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, etc.) or survey several

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, EJB3, GWT, Hadoop, SOAP-based and RESTful Web Services

Contact hall@coreservlets.com for details

Topics in This Section

• Quick GWT RPC review
• Motivation
• Advantages/Disadvantages
• Basic steps
• Example
• More examples
• Alternatives

4

RPC Review: Big Idea

• Write regular methods on server;
don’t write servlet methods
– Methods take arbitrary arguments

• Not HttpServletRequest and HttpServletResponse

– Methods return arbitrary results
• Strings, arrays, lists, custom classes, etc.

• Call methods directly from client;
don’t make explicit HTTP requests
– Call server methods almost as though they were local
– Pass arbitrary arguments and get arbitrary results

• Custom form of serialization handles all the parsing

5

GWT-RPC Development Steps

• Define main data service interface
– Implement RemoteService interface
– Define regular methods without explicit HTTP
– Use @RemoteServiceRelativePath to point at servlet

• Define callback version of data service interface
– If main interface is FooService, define FooServiceAsync

• Make data service servlet
– Extend RemoteServiceServlet, implement service interface
– Supply url-pattern in web.xml that matches relative path

• Create service proxy
– Call GWT.create(YourServiceInterfaceName.class)

• Define client-side callback objects
– With onSuccess and onFailure

6

Motivation behind RPC Service

• Regular GWT RPC has too many
configuration steps every time you need to
define a new set of methods

• Hard to integrate central exception handling
– E.g., if a particular type of exception occurs, I want to

always navigate to some view
– Without central exception handling, you have to hard

code this in every single AsyncCallback.onFailure

• Any changes to existing methods are
somewhat cumbersome
– Always have to remember to update url-pattern, etc.

• I want to set it up once and forget it!
7

Solution:
Command Design Pattern

• Command design pattern fits perfectly to
the Request/Response paradigm
– In the end, this is what GWT RPC is: request/response

• Issue a server request for data like a
command

• Server inspects the command type and
dispatches it to the appropriate command
handler

• Handler executes command and returns a
Response

8

RPC Service:
Summary of Features

• Automatic discovery of handlers
• Automatic discovery and autowiring of Spring

Framework enabled handlers
– E.g., allows autowiring of Data Access Objects (DAOs)

• Multiple request commands can share a
response
– E.g., create new item and update item both will return

new/updated item data

• Default implementation of AsyncCallback
– With a way to provide an application-wide exception handler

• Annotation-based configuration
• Only one GWT RPC URL to map

– Everything goes through that central URL9

Configuration Steps

• Download rpc-service-xxx.jar from:
http://code.google.com/p/gwt-tools/downloads/list

• Place JAR in the WEB-INF/lib directory
– Depending on the type of Eclipse project you have, you

might have to tell Eclipse about the JAR (through project
properties – Java Build Path

• In web.xml, configure RPC Service servlet:
<servlet>
<servlet-name>rpc-service-servlet</servlet-name>
<servlet-class>

org.tbiq.gwt.tools.rpcservice.server.RpcServiceServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>
<servlet-name>rpc-service-servlet</servlet-name>
<url-pattern>/contacts/rpc-service</url-pattern>

</servlet-mapping>
10

Configuration Steps (continued)

• In web.xml, configure auto-discovery of
RPC request handlers
– Two choices: package-based or Spring-based discovery

• Package-based discovery example:
<listener>
<listener-class>
org....discovery.DefaultRpcRequestRegistryInitializationListener

</listener-class>
</listener>
<context-param>
<param-name>packagesToScan</param-name>
<param-value>
com.google.gwt.sample.contacts.server.rpc

</param-value>
</context-param>

11

Look for RPC request handlers in this package (or under)
and register them.

Configuration Steps (continued)

• In web.xml, configure auto-discovery of
RPC request handlers
– Two choices: package-based or Spring-based discovery

• Spring-based discovery example:
<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath:/applicationContext.xml</param-value>

</context-param>
<listener>
<listener-class>

org...discovery.SpringRpcRequestRegistryInitializationListener
</listener-class>

</listener>12

Regular Spring Framework configuration for web modules.

RPC Service listener must be configured after the Spring
Framework listener in web.xml.

Using: Basic Steps

• Create response class (in .client package)
– Implements RpcResponse

• Create request class (in .client package)
– Implements RpcRequest<BlahResponse>
– Make sure request/response classes have zero arg

constructor
• Interfaces RpcRequest, RpcResponse already Serializable

• Create handler class (outside .client pkg)
– Imlements RpcRequestHandler
– Implement its execute method

• Setup and make the RPC call from client

13

Example: (retrieve contact)
GetContactResponse.java

public class GetContactResponse implements RpcResponse
{
private Contact contact;

public GetContactResponse(){}

public GetContactResponse(Contact contact) {
this.contact = contact;

}

public Contact getContact() {
return contact;

}

public void setContact(Contact contact) {
this.contact = contact;

}
}

14

Contact returned from server.

Required Zero-arg constructor.

Example: (retrieve contact)
GetContactRequest.java

public class GetContactRequest
implements RpcRequest<GetContactResponse> {

private String contactId;

public GetContactRequest() {}

public GetContactRequest(String contactId) {
this.contactId = contactId;

}

public String getContactId() {
return contactId;

}

public void setContactId(String contactId) {
this.contactId = contactId;

}
}

15

Request is compile-time
tied to the response!

ID of contact to retrieve
from the server.

Example: (retrieve contact)
In SomePresenter.java

DefaultRpcAsyncCallback callback = new DefaultRpcAsyncCallback(
new DefaultApplicationExceptionHandler())
{
@Override
protected void handleResponse(RpcResponse response)
{

// Cast response to GetContactResponse
//(because of GWT compiler generics bug)
GetContactResponse getContactResponse =

(GetContactResponse) response;
contact = getContactResponse.getContact();

// Display retrieved contact
someTextWidget.setValue(contact.getFirstName());
someTextWidget.setValue(contact.getLastName());
someTextWidget.setValue(contact.getEmailAddress());

}
};

rpcService.execute(new GetContactRequest(id), callback);
16

Pops up an alert with the exception.getMessage().

Example: (retrieve contact)
GetContactRequestHandler.java

@RpcHandler
public class GetContactRequestHandler implements

RpcRequestHandler<GetContactRequest, GetContactResponse> {

public GetContactResponse execute(GetContactRequest rpcRequest,
ServletExecutionContext context)

throws RpcServiceException {
// Retrieve contact with the given ID
ContactsStore store = ContactsStore.getContactsStore();
String contactId = rpcRequest.getContactId() + "";
Contact contact = store.getContact(contactId);

// Wrap contact into an RPC response object and return response
GetContactResponse rpcResponse =

new GetContactResponse(contact);
return rpcResponse;

}

public Class<GetContactRequest> getCompatibleRpcRequestType() {
return GetContactRequest.class;

}17

Fully Working Examples

• Check out all the source code with 3
example apps at:
http://code.google.com/p/gwt-tools/source/checkout

• Three example apps:
– Original Contacts app Google provide as an example, but

mavenized
– Same as above plus using place-service

• History handler framework
– Use only if stuck with GWT < 2.1

– Same as above plus using RPC Service with package
autodiscovery of RPC Handlers

– Same as above plus using RPC Service Spring-enabled
autodiscovery of RPC Handlers

18

Alternatives

• gwt-dispatch
– http://code.google.com/p/gwt-dispatch/
– Widely used
– Nice developer forum

• GWT RequestFactory
– Much more advanced but not as straightforward to use
– Has many more features like automatically creating

EntityProxy beans to reuse EJB 3.0 Entity beans directly
in GWT client code

• Google for other open source command-
pattern request/response GWT RPC
frameworks

19

© 2012 Yaakov Chaikin

Customized Java EE Training: http://courses.coreservlets.com/
GWT, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

© 2012 Yaakov Chaikin

Customized Java EE Training: http://courses.coreservlets.com/
GWT, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

