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RPC Review: Big Idea

• Write regular methods on server; 
don’t write servlet methods
– Methods take arbitrary arguments

• Not HttpServletRequest and HttpServletResponse

– Methods return arbitrary results
• Strings, arrays, lists, custom classes, etc.

• Call methods directly from client;
don’t make explicit HTTP requests
– Call server methods almost as though they were local
– Pass arbitrary arguments and get arbitrary results

• Custom form of serialization handles all the parsing 
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GWT-RPC Development Steps

• Define main data service interface
– Implement RemoteService interface
– Define regular methods without explicit HTTP
– Use @RemoteServiceRelativePath to point at servlet

• Define callback version of data service interface
– If main interface is FooService, define FooServiceAsync

• Make data service servlet
– Extend RemoteServiceServlet, implement service interface
– Supply url-pattern in web.xml that matches relative path

• Create service proxy
– Call GWT.create(YourServiceInterfaceName.class)

• Define client-side callback objects
– With onSuccess and onFailure
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Motivation behind RPC Service

• Regular GWT RPC has too many 
configuration steps every time you need to 
define a new set of methods

• Hard to integrate central exception handling
– E.g., if a particular type of exception occurs, I want to 

always navigate to some view
– Without central exception handling, you have to hard 

code this in every single AsyncCallback.onFailure

• Any changes to existing methods are 
somewhat cumbersome
– Always have to remember to update url-pattern, etc.

• I want to set it up once and forget it!
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Solution: 
Command Design Pattern

• Command design pattern fits perfectly to 
the Request/Response paradigm
– In the end, this is what GWT RPC is: request/response

• Issue a server request for data like a 
command

• Server inspects the command type and 
dispatches it to the appropriate command 
handler

• Handler executes command and returns a 
Response
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RPC Service: 
Summary of Features

• Automatic discovery of handlers
• Automatic discovery and autowiring of Spring 

Framework enabled handlers
– E.g., allows autowiring of Data Access Objects (DAOs)

• Multiple request commands can share a 
response
– E.g., create new item and update item both will return 

new/updated item data

• Default implementation of AsyncCallback
– With a way to provide an application-wide  exception handler

• Annotation-based configuration
• Only one GWT RPC URL to map

– Everything goes through that central URL9



Configuration Steps

• Download rpc-service-xxx.jar from:
http://code.google.com/p/gwt-tools/downloads/list

• Place JAR in the WEB-INF/lib directory
– Depending on the type of Eclipse project you have, you 

might have to tell Eclipse about the JAR (through project 
properties – Java Build Path

• In web.xml, configure RPC Service servlet:
<servlet>
<servlet-name>rpc-service-servlet</servlet-name>
<servlet-class>

org.tbiq.gwt.tools.rpcservice.server.RpcServiceServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>
<servlet-name>rpc-service-servlet</servlet-name>
<url-pattern>/contacts/rpc-service</url-pattern>

</servlet-mapping>
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Configuration Steps (continued)

• In web.xml, configure auto-discovery of 
RPC request handlers
– Two choices: package-based or Spring-based discovery

• Package-based discovery example:
<listener>
<listener-class>
org....discovery.DefaultRpcRequestRegistryInitializationListener

</listener-class>
</listener>
<context-param>
<param-name>packagesToScan</param-name>
<param-value>
com.google.gwt.sample.contacts.server.rpc

</param-value>
</context-param>
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Look for RPC request handlers in this package (or under) 
and register them.



Configuration Steps (continued)

• In web.xml, configure auto-discovery of 
RPC request handlers
– Two choices: package-based or Spring-based discovery

• Spring-based discovery example:
<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath:/applicationContext.xml</param-value>

</context-param>
<listener>
<listener-class>

org...discovery.SpringRpcRequestRegistryInitializationListener
</listener-class>

</listener>12

Regular Spring Framework configuration for web modules.

RPC Service listener must be configured after the Spring 
Framework listener in web.xml.

Using: Basic Steps

• Create response class (in .client package)
– Implements RpcResponse

• Create request class (in .client package)
– Implements RpcRequest<BlahResponse>
– Make sure request/response classes have zero arg

constructor
• Interfaces RpcRequest, RpcResponse already Serializable

• Create handler class (outside .client pkg)
– Imlements RpcRequestHandler
– Implement its execute method

• Setup and make the RPC call from client
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Example: (retrieve contact) 
GetContactResponse.java

public class GetContactResponse implements RpcResponse
{
private Contact contact;

public GetContactResponse(){}

public GetContactResponse(Contact contact) {
this.contact = contact;

}

public Contact getContact() {
return contact;

}

public void setContact(Contact contact) {
this.contact = contact;

}
}
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Contact returned from server.

Required Zero-arg constructor.

Example: (retrieve contact) 
GetContactRequest.java

public class GetContactRequest
implements RpcRequest<GetContactResponse> {

private String contactId;

public GetContactRequest() {}

public GetContactRequest(String contactId) {
this.contactId = contactId;

}

public String getContactId() {
return contactId;

}

public void setContactId(String contactId) {
this.contactId = contactId;

}
}
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Request is compile-time 
tied to the response!

ID of contact to retrieve 
from the server.



Example: (retrieve contact) 
In SomePresenter.java

DefaultRpcAsyncCallback callback = new DefaultRpcAsyncCallback(
new DefaultApplicationExceptionHandler())
{
@Override
protected void handleResponse(RpcResponse response)
{

// Cast response to GetContactResponse
//(because of GWT compiler generics bug)
GetContactResponse getContactResponse = 

(GetContactResponse) response;
contact = getContactResponse.getContact();

// Display retrieved contact
someTextWidget.setValue(contact.getFirstName());
someTextWidget.setValue(contact.getLastName());
someTextWidget.setValue(contact.getEmailAddress());

}
};

rpcService.execute(new GetContactRequest(id), callback);
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Pops up an alert with the exception.getMessage().

Example: (retrieve contact) 
GetContactRequestHandler.java

@RpcHandler
public class GetContactRequestHandler implements  

RpcRequestHandler<GetContactRequest, GetContactResponse> {

public GetContactResponse execute(GetContactRequest rpcRequest,
ServletExecutionContext context)

throws RpcServiceException {
// Retrieve contact with the given ID
ContactsStore store = ContactsStore.getContactsStore();
String contactId = rpcRequest.getContactId() + "";
Contact contact = store.getContact(contactId);

// Wrap contact into an RPC response object and return response
GetContactResponse rpcResponse = 

new GetContactResponse(contact);
return rpcResponse;

}

public Class<GetContactRequest> getCompatibleRpcRequestType() {
return GetContactRequest.class;

}17



Fully Working Examples

• Check out all the source code with 3 
example apps at:
http://code.google.com/p/gwt-tools/source/checkout

• Three example apps:
– Original Contacts app Google provide as an example, but 

mavenized
– Same as above plus using place-service

• History handler framework
– Use only if stuck with GWT < 2.1

– Same as above plus using RPC Service with package 
autodiscovery of RPC Handlers

– Same as above plus using RPC Service Spring-enabled 
autodiscovery of RPC Handlers
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Alternatives

• gwt-dispatch
– http://code.google.com/p/gwt-dispatch/
– Widely used
– Nice developer forum

• GWT RequestFactory
– Much more advanced but not as straightforward to use
– Has many more features like automatically creating 

EntityProxy beans to reuse EJB 3.0 Entity beans directly 
in GWT client code

• Google for other open source command-
pattern request/response GWT RPC 
frameworks
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