
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Android Programming:
2D Drawing Part 1: Using onDraw

Originals of Slides and Source Code for Examples:
http://www.coreservlets.com/android-tutorial/

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Android training, please see courses
at http://courses.coreservlets.com/.
Taught by the author of Core Servlets and JSP, More

Servlets and JSP, and this Android tutorial. Available at
public venues, or customized versions can be held

on-site at your organization.
• Courses developed and taught by Marty Hall

– JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 6 or 7 programming, custom mix of topics
– Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, etc.) or survey several

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, EJB3, GWT, Hadoop, SOAP-based and RESTful Web Services

Contact hall@coreservlets.com for details

Topics in This Section

• Extending a View
• Using onDraw
• Referring to custom View in layout file
• Drawing basic shapes with Canvas
• Drawing bitmaps (images) with Canvas

5

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Extending a View

Summary: Java

• Idea
– Extend the View class, put the drawing code in onDraw

• Note: this assumes the View is placed in a fixed-size
region. In lecture on Custom Components, we will discuss
using onMeasure to calculate desired sizes.

• Syntax
public class RandomShapeView extends View {

…
protected void onDraw(Canvas canvas) {

super.onDraw(canvas);
canvas.drawBlah(…);
…

}
}

7

Summary: XML

• Idea
– Refer to the custom View with the “view” tag in layout

file. Pass standard attributes (id, sizes, background).
• In lecture on Custom Components, we will discuss passing

custom attributes.

• Syntax
…
<view

class="com.someCompany.somePackage.YourView"
android:id="…"
android:layout_width="…"
android:layout_height="…"
android:background="…" />

…
8

If you use regular (non-inner) classes, you can
replace <view class="package.Class" …/> with
<package.Class …/>. However, this will not
work with inner classes.

View Constructors

• ViewName(Context)
• Used when you directly call View constructor. Usually

when you add View to Activity with setContentView.
public ViewName(Context context) {

super(context);

…

}

• ViewName(Context, AttributeSet)
• Used when View built from layout XML file. Section on

Custom Components will show how to use AttributeSet.
public ViewName(Context context, AttributeSet attrs) {

super(context);

…

}

9

Using onDraw:
Canvas and Paint

• Canvas
– onDraw is passed a Canvas. Use its drawing methods.

• Paint
– Most of the drawing methods (drawArc, drawCircle, etc.)

take a Paint as an argument. This is different from Swing
and the AWT, where you set the paint on the Graphics
separately from the drawing methods.

– The Paint also incorporates the font size
– Making a Paint

• Paint p = new Paint();
• // Or Paint p = new Paint(Paint.ANTI_ALIAS_FLAG);
• p.setColor(…);
• p.setTextSize(…);

10

Common Canvas Drawing
Methods

• drawColor, drawRGB, drawARGB
– Fill entire region with a color. Note that this uses Color, not Paint.

• drawBitmap
– Draw a picture. Create a Bitmap from an image file via

BitmapFactory.decodeResource
(getResources(),R.drawable.blah)

• drawCircle, drawOval, drawRect, drawRoundRect,
drawArc, drawLine
– Draw basic shape, usually inside rectangular region

• drawText, drawTextOnPath, drawPosText
– Draw text in simple or fancy ways. Note that drawPosText is

deprecated in recent Android releases.

• drawPath
– A Path lets you combine multiple shapes into one object

11

Drawing Images

• Put image files in res/drawable
– If file is res/drawable/foo_bar.gif, you will refer to it with

R.drawable.foo_bar.
– You often want versions of your image in various resolutions, so

you will put the images in res/drawable-xhdpi (extra high),
res/drawable-hdpi (high), res/drawable-mdpi (medium),
res/drawable-ldpi (low)

– Supported image types are jpeg, gif, png, bmp, and (Android 4.0+
only) webp

• Load image into Bitmap
– Bitmap pic = BitmapFactory.decodeResource

(getResources(), R.drawable.base_name);

• Draw Bitmap
– canvas.drawBitmap(pic, left, top, null);

• The last arg is the Paint (null for opaque images)
12

Triggering Redrawing

• Automatically
– After screen is rotated or covered and reexposed

• Manually
– Yes

• Call “invalidate” on the View
• If called by Thread other than main thread, you should call

“postInvalidate” instead of “invalidate”

– No
• Call “onDraw” directly

– Very simple animation
• By repeatedly doing short Thread.sleep, then calling

invalidate
– For details on fancier animation, see

http://developer.android.com/guide/topics/graphics/index.html
13

Avoid Allocating Drawing
Objects in onDraw

• Idea
– onDraw is expensive
– onDraw can be called many times

• Consequence
– Don’t allocate graphics objects in onDraw
– This is especially true of Bitmaps, but applies to Paint

and other simpler objects as well

14

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Example: View that
Draws Random Shapes

Example Summary

• Idea
– Make View that draws random backgrounds, circles,

rectangles, bitmaps, and text
• All sizes and locations based on current dimensions of the

View
• View must go in fixed-sized region for now. We will

discuss using onMeasure to request sizes in section on
Custom Components

– Redrawing triggered by button in main Activity
• Gets id of custom View, calls findViewById, then calls

invalidate on each button press

16

View: General Class Structure

public class RandomShapeView extends View {
private Integer[] mBackgrounds = { ... };
private Paint[] mForegrounds = { ... };
private Bitmap[] mPics = { ... };
private String mMessage = "Android";

public RandomShapeView(Context context) {
super(context);

}

public RandomShapeView(Context context, AttributeSet attrs) {
super(context, attrs);

}

@Override
protected void onDraw(Canvas canvas) {

super.onDraw(canvas);
...

}
...

}17

To avoid repeated allocation, objects like Paint
and Bitmap objects should be instantiated once
per View instantiation (i.e., as instance variable
values or in the constructor).

View: onDraw

public class RandomShapeView extends View {
...
@Override
protected void onDraw(Canvas canvas) {

super.onDraw(canvas);
canvas.drawColor(RandomUtils.randomElement(mBackgrounds));
int viewWidth = getWidth();
int viewHeight = getHeight();
int avgShapeWidth = viewWidth/5;
for(int i=0; i<20; i++) {

drawRandomCircle(canvas, viewWidth,
viewHeight, avgShapeWidth);

drawRandomRect(canvas, viewWidth,
viewHeight, avgShapeWidth);

drawRandomBitmap(canvas, viewWidth, viewHeight);
drawRandomText(canvas, viewWidth,

viewHeight, avgShapeWidth);
}

}
}

18

You must call getWidth and getHeight in onDraw (or after), not in the constructor.
However, to avoid repeated allocation, “real” objects like Paint and Bitmap objects
should not be instantiated in onDraw.

View:
Random Background Colors

public class RandomShapeView extends View {
private Integer[] mBackgrounds =

{ Color.CYAN, Color.GRAY, Color.LTGRAY,
Color.MAGENTA, Color.YELLOW, Color.WHITE };

...

@Override
protected void onDraw(Canvas canvas) {

super.onDraw(canvas);
canvas.drawColor(RandomUtils.randomElement(mBackgrounds));
...

}
}

19

Notice that in Android, colors are really ints, as opposed
to AWT and Swing where colors are real Objects. Also
note that you draw backgrounds with colors, not Paints.

View: Random Circles

public class RandomShapeView extends View {
private Paint[] mForegrounds =

{ makePaint(Color.BLACK), makePaint(Color.BLUE),
makePaint(Color.GREEN), makePaint(Color.RED) };

...

private void drawRandomCircle(Canvas canvas, int viewWidth,
int viewHeight, int avgShapeWidth) {

float x = RandomUtils.randomFloat(viewWidth);
float y = RandomUtils.randomFloat(viewHeight);
float radius = RandomUtils.randomFloat(avgShapeWidth/2);
Paint circleColor = RandomUtils.randomElement(mForegrounds);
canvas.drawCircle(x, y, radius, circleColor);

}

private Paint makePaint(int color) {
Paint p = new Paint();
p.setColor(color);
return(p);

}
}

20

drawRandomCircle is called from the loop in onDraw.

Note that the Paint objects are not allocated in onDraw,
but rather just once per class instantiation.

View: Random Rectangles

public class RandomShapeView extends View {
private Paint[] mForegrounds =

{ makePaint(Color.BLACK), makePaint(Color.BLUE),
makePaint(Color.GREEN), makePaint(Color.RED) };

...

private void drawRandomRect(Canvas canvas, int viewWidth,
int viewHeight, int avgShapeWidth) {

float left = RandomUtils.randomFloat(viewWidth);
float top = RandomUtils.randomFloat(viewHeight);
float width = RandomUtils.randomFloat(avgShapeWidth);
float right = left + width;
float bottom = top + width;
Paint squareColor = RandomUtils.randomElement(mForegrounds);
canvas.drawRect(left, top, right, bottom, squareColor);

}
}

21

View: Random Bitmaps

public class RandomShapeView extends View {
private Bitmap[] mPics =

{ makeBitmap(R.drawable.emo_im_angel),
makeBitmap(R.drawable.emo_im_cool),
makeBitmap(R.drawable.emo_im_crying),
makeBitmap(R.drawable.emo_im_happy),
makeBitmap(R.drawable.emo_im_yelling) };

...

private void drawRandomBitmap(Canvas canvas, int viewWidth,
int viewHeight) {

float left = RandomUtils.randomFloat(viewWidth);
float top = RandomUtils.randomFloat(viewHeight);
Bitmap pic = RandomUtils.randomElement(mPics);
// Last arg is the Paint: you can use null for opaque images
canvas.drawBitmap(pic, left, top, null);

}

private Bitmap makeBitmap(int bitmapId) {
return(BitmapFactory.decodeResource(getResources(), bitmapId));

}
}

22

There are versions of em_im_angel.png,
emo_im_cool.png, etc., in
res/drawable/xhdpi (extra-high dpi),
res/drawable/hdpi (high dpi),
res/drawable/mdpi (medium dpi), and
res/drawable/ldpi (low dpi).

Note again that the bitmaps are allocated
once per View instantiation, not repeatedly
in onDraw.

Random Text

public class RandomShapeView extends View {
private String mMessage = "Android";

...

private void drawRandomText(Canvas canvas, int viewWidth,
int viewHeight, int avgShapeWidth) {

float x = RandomUtils.randomFloat(viewWidth);
float y = RandomUtils.randomFloat(viewHeight);
float textSize = RandomUtils.randomFloat(avgShapeWidth);
Paint textPaint = RandomUtils.randomElement(mForegrounds);
textPaint.setTextSize(textSize);
canvas.drawText(mMessage, x, y, textPaint);

}
}

23

Helper Class: Random Utilities

public class RandomUtils {
private static Random r = new Random();

public static int randomInt(int range) {
return(r.nextInt(range));

}

public static int randomIndex(Object[] array) {
return(randomInt(array.length));

}

public static <T> T randomElement(T[] array) {
return(array[randomIndex(array)]);

}

public static float randomFloat(int n) {
return((float)Math.random()*n);

}
}24

Layout File for Example
(activity_draw_shapes1.xml)

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/LinearLayout1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" >

<Button
android:onClick="redraw"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/redraw_button_label" />

<view
class="com.coreservlets.drawing.RandomShapeView"
android:id="@+id/drawing_area"
android:layout_width="match_parent"
android:layout_height="match_parent" />

</LinearLayout>
25

Activity for Example

public class DrawShapes1 extends Activity {
private RandomShapeView mDrawingArea;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_draw_shapes1);
mDrawingArea =

(RandomShapeView)findViewById(R.id.drawing_area);
}

/** Handles events for the button. Redraws the ShapeView. */

public void redraw(View clickedButton) {
mDrawingArea.invalidate();

}
}

26

Overall Main Layout File
(main.xml)

<LinearLayout ... android:orientation="vertical">
<Button

android:onClick="launchDrawShapes1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/random_shape_button_label" />

<Button
android:onClick="launchRotate"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/rotate_button_label" />

<Button
android:onClick="launchSkew"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/skew_button_label" />

<Button
android:onClick="launchDrawShapes2"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/shape_drawable_button_label" />

</LinearLayout>
27

Overall Main Activity

public class DrawingExampleLauncher extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

public void launchDrawShapes1(View clickedButton) {
Intent activityIntent =

new Intent(this, DrawShapes1.class);
startActivity(activityIntent);

}

// Similar button-handling code for
// other three drawing examples

}28

Results

29

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

References

• Android Dev Guide: “Canvas & Drawables”
– http://developer.android.com/guide/topics/graphics/

2d-graphics.html

• Pro Android 3 (Komatineni et al)
– Chapter 16, “Exploring 2D Animation”

• Professional Android 4 (Meier)
– “Creating New Views” in Chapter 4
– “Enhancing Your Views” in Chapter 11

• Programming Android (Mednieks et al)
– Chapter 9, “Drawing 2D and 3D Graphics”

31

Summary

• Java
– Extend View
– Make 2 constructors (Context and Context/AttributeSet)
– Override onDraw

protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
canvas.drawBlah(…);
…

}
– Avoid allocating Paint, Bitmap, etc. in onDraw

• XML
<view

class="com.someCompany.somePackage.YourView"
android:id="…"
android:layout_width="…"
android:layout_height="…"
android:background="…" />

32

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

