Hadoop Introduction

Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/
Also see the customized Hadoop training courses (onsite or at public venues) – http://courses.coreservlets.com/hadoop-training.html

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live customized Hadoop training (including prep for the Cloudera certification exam), please email info@coreservlets.com

Taught by recognized Hadoop expert who spoke on Hadoop several times at JavaOne, and who uses Hadoop daily in real-world apps. Available at public venues, or customized versions can be held on-site at your organization.

• Courses developed and taught by Marty Hall
 – JSF 2.2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 7 or 8 programming, custom mix of topics
 – Courses available in any state or country. Maryland/DC area companies can also choose afternoon/evening courses.
• Courses developed and taught by coreservlets.com experts (edited by Marty)
 – Spring, Hibernate/JPA, GWT, Hadoop, HTML5, RESTful Web Services
Contact info@coreservlets.com for details
Agenda

• Big Data
• Hadoop Introduction
• History
• Comparison to Relational Databases
• Hadoop Eco-System and Distributions
• Resources

Big Data

• Information Data Corporation (IDC) estimates data created in 2010 to be 1.2 ZETTABYTES (1.2 Trillion Gigabytes)
• Companies continue to generate large amounts of data, here are some 2011 stats:
 – Facebook ~ 6 billion messages per day
 – EBay ~ 2 billion page views a day, ~ 9 Petabytes of storage
 – Satellite Images by Skybox Imaging ~ 1 Terabyte per day

Sources:
"Digital Universe" study by IDC; http://www.emc.com/leadership/programs/digital-universe.htm
Hadoop World 2011 Keynote: Hugh E. Williams, eBay
Hadoop World 2011: Building Realtime Big Data Services at Facebook with Hadoop and HBase
Hadoop World 2011: Indexing the Earth – Large Scale Satellite Image Processing Using Hadoop
Hadoop

• Existing tools were not designed to handle such large amounts of data

• "The Apache™ Hadoop™ project develops open-source software for reliable, scalable, distributed computing." - http://hadoop.apache.org
 – Process Big Data on clusters of commodity hardware
 – Vibrant open-source community
 – Many products and tools reside on top of Hadoop

Hadoop Jobs

Job Trends from Indeed.com

Source: http://www.indeed.com/jobanalytics/jobtrends?q=cloud+computing%2C+hadoop%2C+jpa%2C+ejb3&l=
Who Uses Hadoop?

Data Storage

- Storage capacity has grown exponentially but read speed has not kept up
 - 1990:
 - Store 1,400 MB
 - Transfer speed of 4.5MB/s
 - Read the entire drive in ~ 5 minutes
 - 2010:
 - Store 1 TB
 - Transfer speed of 100MB/s
 - Read the entire drive in ~ 3 hours
- Hadoop - 100 drives working at the same time can read 1TB of data in 2 minutes

Source: http://wiki.apache.org/hadoop/PoweredBy
Hadoop Cluster

- A set of "cheap" commodity hardware
- Networked together
- Resides in the same location
 - Set of servers in a set of racks in a data center
Use Commodity Hardware

- “Cheap” Commodity Server Hardware
 - No need for super-computers, use commodity unreliable hardware
 - Not desktops

Hadoop System Principles

- Scale-Out rather than Scale-Up
- Bring code to data rather than data to code
- Deal with failures – they are common
- Abstract complexity of distributed and concurrent applications
Scale-Out Instead of Scale-Up

• **It is harder and more expensive to scale-up**
 – Add additional resources to an existing node (CPU, RAM)
 – Moore’s Law can’t keep up with data growth
 – New units must be purchased if required resources can not be added
 – Also known as scale vertically

• **Scale-Out**
 – Add more nodes/machines to an existing distributed application
 – Software Layer is designed for node additions or removal
 – Hadoop takes this approach - A set of nodes are bonded together as a single distributed system
 – Very easy to scale down as well

Code to Data

• **Traditional data processing architecture**
 – nodes are broken up into separate processing and storage nodes connected by high-capacity link
 – Many data-intensive applications are not CPU demanding causing bottlenecks in network
Code to Data

- **Hadoop co-locates processors and storage**
 - Code is moved to data (size is tiny, usually in KBs)
 - Processors execute code and access underlying local storage

![Hadoop Cluster Diagram]

Failures are Common

- **Given a large number machines, failures are common**
 - Large warehouses may see machine failures weekly or even daily
- **Hadoop is designed to cope with node failures**
 - Data is replicated
 - Tasks are retried
Abstract Complexity

- Hadoop abstracts many complexities in distributed and concurrent applications
 - Defines small number of components
 - Provides simple and well defined interfaces of interactions between these components
- Frees developer from worrying about system-level challenges
 - race conditions, data starvation
 - processing pipelines, data partitioning, code distribution
 - etc.
- Allows developers to focus on application development and business logic

History of Hadoop

- Started as a sub-project of Apache Nutch
 - Nutch’s job is to index the web and expose it for searching
 - Open Source alternative to Google
 - Started by Doug Cutting
- In 2004 Google publishes Google File System (GFS) and MapReduce framework papers
- Doug Cutting and Nutch team implemented Google’s frameworks in Nutch
- In 2006 Yahoo! hires Doug Cutting to work on Hadoop with a dedicated team
- In 2008 Hadoop became Apache Top Level Project
 - http://hadoop.apache.org
Naming Conventions?

• Doug Cutting drew inspiration from his family
 – Lucene: Doug’s wife’s middle name
 – Nutch: A word for "meal" that his son used as a toddler
 – Hadoop: Yellow stuffed elephant named by his son

Comparisons to RDBMS

• Until recently many applications utilized Relational Database Management Systems (RDBMS) for batch processing
 – Oracle, Sybase, MySQL, Microsoft SQL Server, etc.
 – Hadoop doesn’t fully replace relational products; many architectures would benefit from both Hadoop and a Relational product(s)

• Scale-Out vs. Scale-Up
 – RDBMS products scale up
 • Expensive to scale for larger installations
 • Hits a ceiling when storage reaches 100s of terabytes
 – Hadoop clusters can scale-out to 100s of machines and to petabytes of storage
Comparisons to RDBMS (Continued)

• Structured Relational vs. Semi-Structured vs. Unstructured
 – RDBMS works well for structured data - tables that conform to a predefined schema
 – Hadoop works best on Semi-structured and Unstructured data
 • Semi-structured may have a schema that is loosely followed
 • Unstructured data has no structure whatsoever and is usually just blocks of text (or for example images)
 • At processing time types for key and values are chosen by the implementer
 – Certain types of input data will not easily fit into Relational Schema such as images, JSON, XML, etc...

Comparison to RDBMS

• Offline batch vs. online transactions
 – Hadoop was not designed for real-time or low latency queries
 – Products that do provide low latency queries such as HBase have limited query functionality
 – Hadoop performs best for offline batch processing on large amounts of data
 – RDBMS is best for online transactions and low-latency queries
 – Hadoop is designed to stream large files and large amounts of data
 – RDBMS works best with small records
Comparison to RDBMS

- Hadoop and RDBMS frequently complement each other within an architecture
- For example, a website that
 - has a small number of users
 - produces a large amount of audit logs

![Diagram showing workflow between Web Server, RDBMS, and Hadoop]

1. Utilize RDBMS to provide rich User Interface and enforce data integrity
2. RDBMS generates large amounts of audit logs; the logs are moved periodically to the Hadoop cluster
3. All logs are kept in Hadoop; Various analytics are executed periodically
4. Results copied to RDBMS to be used by Web Server; for example "suggestions" based on audit history

Hadoop Eco System

- At first Hadoop was mainly known for two core products:
 - **HDFS**: Hadoop Distributed FileSystem
 - **MapReduce**: Distributed data processing framework
- Today, in addition to HDFS and MapReduce, the term also represents a multitude of products:
 - **HBase**: Hadoop column database; supports batch and random reads and limited queries
 - **Zookeeper**: Highly-Available Coordination Service
 - **Oozie**: Hadoop workflow scheduler and manager
 - **Pig**: Data processing language and execution environment
 - **Hive**: Data warehouse with SQL interface
Hadoop Eco System

• To start building an application, you need a file system
 – In Hadoop world that would be Hadoop Distributed File System (HDFS)
 – In Linux it could be ext3 or ext4
• Addition of a data store would provide a nicer interface to store and manage your data
 – HBase: A key-value store implemented on top of HDFS
 – Traditionally one could use RDBMS on top of a local file system

HBase

Hadoop Distributed FileSystem (HDFS)

Hadoop Eco System

• For batch processing, you will need to utilize a framework
 – In Hadoop’s world that would be MapReduce
 – MapReduce will ease implementation of distributed applications that will run on a cluster of commodity hardware

MapReduce

HBase

Hadoop Distributed FileSystem (HDFS)
Hadoop Eco System

• Many problems lend themselves to a MapReduce solution with multiple jobs
 – Apache Oozie is a popular MapReduce workflow and coordination product

 Oozie
 MapReduce
 HBase
 Hadoop Distributed FileSystem (HDFS)

Hadoop Eco System

• MapReduce paradigm may not work well for analysts and data scientists
 – Addition of Apache Pig, a high-level data flow scripting language, may be beneficial

 Oozie
 Pig
 MapReduce
 HBase
 Hadoop Distributed FileSystem (HDFS)
Hadoop Eco System

• Your organization may have a good number of SQL experts
 – Addition of Apache Hive, a data warehouse solution that provides a SQL based interface, may bridge the gap

Hadoop Distributed FileSystem (HDFS)

<table>
<thead>
<tr>
<th>Oozie</th>
<th>Pig</th>
<th>Hive</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapReduce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBase</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hadoop Distributions

• Let’s say you go download Hadoop’s HDFS and MapReduce from http://hadoop.apache.org/
• At first it works great but then you decide to start using HBase
 – No problem, just download HBase from http://hadoop.apache.org/ and point it to your existing HDFS installation
 – But you find that HBase can only work with a previous version of HDFS, so you go downgrade HDFS and everything still works great
• Later on you decide to add Pig
 – Unfortunately the version of Pig doesn’t work with the version of HDFS, it wants you to upgrade
 – But if you upgrade you’ll break HBase...
Hadoop Distributions

• Hadoop Distributions aim to resolve version incompatibilities

• Distribution Vendor will
 – Integration Test a set of Hadoop products
 – Package Hadoop products in various installation formats
 • Linux Packages, tarballs, etc.
 – Distributions may provide additional scripts to execute Hadoop
 – Some vendors may choose to backport features and bug fixes made by Apache
 – Typically vendors will employ Hadoop committers so the bugs they find will make it into Apache’s repository

Distribution Vendors

• Cloudera Distribution for Hadoop (CDH)
• MapR Distribution
• Hortonworks Data Platform (HDP)
• Apache BigTop Distribution
• Greenplum HD Data Computing Appliance
Cloudera Distribution for Hadoop (CDH)

• **Cloudera has taken the lead on providing Hadoop Distribution**
 – Cloudera is affecting the Hadoop eco-system in the same way RedHat popularized Linux in the enterprise circles

• **Most popular distribution**
 – 100% open-source

• **Cloudera employs a large percentage of core Hadoop committers**

• **CDH is provided in various formats**
 – Linux Packages, Virtual Machine Images, and Tarballs

Cloudera Distribution for Hadoop (CDH)

• **Integrates majority of popular Hadoop products**
 – HDFS, MapReduce, HBase, Hive, Mahout, Oozie, Pig, Sqoop, Whirr, Zookeeper, Flume

• **CDH4 is used in this class**
Supported Operating Systems

- Each Distribution will support its own list of Operating Systems (OS)
- Common OS supported
 - Red Hat Enterprise
 - CentOS
 - Oracle Linux
 - Ubuntu
 - SUSE Linux Enterprise Server
- Please see vendors documentation for supported OS and version
 - Supported Operating Systems for CDH4:
 https://ccp.cloudera.com/display/CDH4DOC/Before+You+Install+CDH4+on+a+Cluster#BeforeYouInstallCDH4onaCluster-SupportedOperatingSystemsforCDH4

Resources

- Apache Hadoop Documentation
 - http://hadoop.apache.org
- Each project will have their own documentation artifacts and usually a wiki
- Each Hadoop Distribution Vendor provides documentation as well:
 - For example:
 https://ccp.cloudera.com/display/DOC/Documentation
Resources: Books

Hadoop: The Definitive Guide
Tom White (Author)
O'Reilly Media; 3rd Edition (May 6, 2012)

Hadoop in Action
Chuck Lam (Author)
Manning Publications; 1st Edition (December, 2010)

MapReduce Design Patterns
Donald Miner (Author), Adam Shook (Author)
O'Reilly Media (November 22, 2012)

Resources: Books

HBase: The Definitive Guide
Lars George (Author)
O'Reilly Media; 1 edition (September 20, 2011)

Programming Pig
Alan Gates (Author)
O'Reilly Media; 1st Edition (October, 2011)

Hadoop Operations
Eric Sammer (Author)
O'Reilly Media (October 22, 2012)
Resources: Books

Data-Intensive Text Processing with MapReduce
Jimmy Lin and Chris Dyer (Authors) (April, 2010)
Download for FREE:
http://lintool.github.com/MapReduceAlgorithms/index.html

Programming Hive
Edward Capriolo, Dean Wampler, Jason Rutherglen (Authors)
O'Reilly Media; 1 edition (October, 2012)

Hadoop in Practice
Alex Holmes (Author)
Manning Publications; (October 10, 2012)

Resources: Your Instructor

- Dima May
 - dimamay@coreservlets.com
 - Email me any time!
Wrap-Up

Summary

- **We learned about**
 - Data storage needs are rapidly increasing
 - Hadoop has become the de-facto standard for handling these massive data sets
 - The Cloudera Distribution for Hadoop (CDH) is the most commonly used Hadoop release distribution
 - There is a number of Hadoop related publications available
Questions?

More info:
http://www.coreservlets.com/hadoop-tutorial – Hadoop programming tutorial
http://courses.coreservlets.com/hadoop-training.html – Customized Hadoop training courses, at public venues or onsite at your organization
http://courses.coreservlets.com/Course-Materials/java.html – General Java programming tutorial
http://www.coreservlets.com/java-8-tutorial – Java 8 tutorial
http://www.coreservlets.com/JSF-Tutorial/jsf2/ – JSF 2.2 tutorial

Customized Java EE Training: http://courses.coreservlets.com/
Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training
Developed and taught by well-known author and developer. At public venues or onsite at your location.