
© 2009 coreservlets.com

Association andAssociation and
Collection Mapping

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/hibernate.html

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2009 coreservlets.com

For live Spring & Hibernate training, see
t htt // l t /courses at http://courses.coreservlets.com/.

Taught by the experts that brought you this tutorial.
Available at public venues or customized versionsAvailable at public venues, or customized versions

can be held on-site at your organization.

C d l d d t ht b M t H ll

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

• Courses developed and taught by Marty Hall
– Java 5, Java 6, intermediate/beginning servlets/JSP, advanced servlets/JSP, Struts, JSF, Ajax, GWT, custom mix of topics

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, EJB3, Ruby/Rails

Contact hall@coreservlets.com for details

Topics in This Sectionp

• Understand Collection and
Association relationships

• See how to realize relationships inSee how to realize relationships in
Java and databases
Walk through the Hibernate• Walk through the Hibernate
approach of mapping both
C ll ti d A i tiCollections and Associations.

4

© 2009 coreservlets.com

R l ti hiRelationships

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Relationship Typesp yp

• Association
– Mapping relationships between two objects
– ExampleExample

• Account and AccountOwner

• Collection• Collection
– Collection of values representing individual

i f d tpieces of data
– Example

M f h lid• Map of holidays
• String array of months

Relationship Dimensionsp

• Relationships between entities can p
exist in multiple ways
– MultiplicityMultiplicity

• How many on each side of the
relationship?p

– Directionality
• From which side(s) of the relationship canFrom which side(s) of the relationship can

you access the other?

• A single object may have multipleA single object may have multiple
relationships

Relationship Multiplicityp p y

• One-to-Many
A i l A t h T ti– A single Account has many Transactions

– Reverse of a many-to-one relationship
• Many-to-Oney

– Multiple Transactions belong to a single account
– Reverse of a one-to-many relationship

One to One• One-to-One
– A single AccountOwner has a single HomeAddress
– A single HomeAddress has a single AccountOwnerg g

• Many-to-Many
– Multiple Accounts have multiple AccountOwners

Oft li d th h t t l ti hi– Often realized through two one-to-many relationships
• A single Account has multiple AccountOwners
• A single AccountOwner has multiple Accounts

Relationship Directionality

• Unidirectional
C l bj f id f h– Can only traverse objects from one side of the
relationship

– Example: Account : Transaction
• Given an Account object, can obtain related

Transaction objects.
• Given a Transaction object, cannot obtain related

Account object.
• Bidirectional

– Can traverse objects from both sides of the relationshipCan traverse objects from both sides of the relationship
– Example: Account : Transaction

• Given an Account object, can obtain related
Transaction objectsTransaction objects.

• Given a Transaction object, can obtain related
Account object.

© 2009 coreservlets.com

RealizingRealizing
Relationships

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Java vs. Database

• Java
– Objects are inherently directional

• An object has a reference/pointer to another
objectobject

– Transition by walking a networked graph of
object references

• Database
– Relations are not inherently directional

A t bl bit il j i it l ith• A table can arbitrarily join its columns with
columns of other tables (not just those keyed
to)

– Transition by joining tables together through
joins/foreign keys
*Source: Java Persistence with Hibernate

Relationships in Javap

• Object has an attribute referencing another related
ObjectObject

• For ‘Many’ side, Collections API
– Set

• No duplication allowed• No duplication allowed
• Objects organized with or without order

– Map
• Duplicate values allowed using different keysDuplicate values allowed, using different keys
• Can be organized with or without order

– List
• Duplication allowedDuplication allowed
• Objects expected to be organized in an order

– Arrays
• Duplication allowed
• Objects expected to be organized in an order
• Strongly typed to particular object type, and lacks ability to resize

Relationships in Databasep

• Record relationships can be realized using
l h iseveral techniques

– Denormalized table
• Record repeated in same table each time capturing• Record repeated in same table, each time capturing

different relationship data.

– Foreign keys
F ll id tifi t l t d d th t bl• Follow identifiers to related records on other tables

– Join tables
• Tables specifically setup to maintain a relationship p y p p

between two identities (usually for M:M)

– Ad hoc joins in a query
• Arbitrary joins between columns relating dataArbitrary joins between columns relating data

• Each technique has its pros/cons

Relationships in Databasep

• Denormalized Table
P– Pros

• Very fast
• Easy to query against

– Cons
• Contains redundant data
• Requires many nullable columns

Relationships in Databasep

• Foreign Keys
P– Pros

• Reduce redundancy
• Better modeling of data

– Cons
• Slower than denormalized table
• Slightly more complicated to query against

HEALTH_PLANEMPLOYEE

HEALTH_PLAN_REP

HEALTH_PLAN_NAME

HEALTH_PLAN_ID

EMPLOYEE PHONE

EMPLOYEE_ADDRESS

EMPLOYEE_NAME

EMPLOYEE_ID

EMPLOYEE_PHONE

HEALTH_PLAN_ID

Relationships in Databasep

• Join Tables
Pros– Pros

• Built on foreign key model, enables many:many relationships
– Cons

• Slower yet and even more complex queryingSlower yet, and even more complex querying

CONTRACTOR_ID

CONTRACTOR

CUSTOMER NAME

CUSTOMER_ID

CUSTOMER

CONTRACT

CONTRACTOR_PHONE

CONTRACTOR_NAME
CUSTOMER_PHONE

CUSTOMER_ADDRESS

CUSTOMER CELL

CUSTOMER_NAME

CONTRACT_ID

CONTRACTOR_ID

CUSTOMER_ID

CONTRACTCUSTOMER_CELL

PRICE

START_DATE

Relationships in Databasep

• Joins
– Pros

• Allows for any possible query a user can think of without having
to predefine the requirements in the schema design

C– Cons
• No model enforcement

– Can join ‘age’ and ‘office floor’ columns – but does it make sense?
• Can be complicated/confusing to write; results may not appear

as desired
SELECT CONTRACTOR_NAME FROM CONTRACTOR WHERE CONTRACTOR_STATE = (SELECT
CUSTOMER_STATE FROM CUSTOMER WHERE CUSTOMER_NAME='JOHN SMITH');

CONTRACTOR NAME

CONTRACTOR_ID

CONTRACTOR

CUSTOMER_NAME

CUSTOMER_ID

CUSTOMER

query

CONTRACTOR_STATE

CONTRACTOR_NAME
CUSTOMER_STATE

CUSTOMER_ADDRESS

CUSTOMER_PHONE

query

© 2009 coreservlets.com

Realizing RelationshipsRealizing Relationships
with Hibernate

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Domain object graph modelsj g p
• Hibernate represents domain object

relationships through a graph modelrelationships through a graph model.

A C F G

• Bidirectional relationships require graph

B D E

• Bidirectional relationships require graph
model updates for objects on both sides
– Need to keep all in-memory objects up-to-date.
– If Objects A and B have a bidirectional relationship, and

Object B is added to Object A, need to make sure that
Object A also gets added to Object Bj g j

– Can cause complication when persisting the relationship
• Which side should save the relationship?

Marking the Saving Sideg g

“inverse” attribute
– Used for both 1:M/M:1 and M:M relationships
– For 1:M/M:1

• Usually placed in the mapping file of the• Usually placed in the mapping file of the
single object side of the relationship

– For M:M
• One side of the relationship
• If <idbag> used, must be on the non-idbag

sideside
• “property-ref” attribute

Used for 1:1 relationships– Used for 1:1 relationships
• Either side of the relationship, but only once

Setting up Relationshipsg p p

1. Determine your domain model relationships
• Define each as an association or collection
• Identify the multiplicity between objects
• Decide on the directionality• Decide on the directionality

• Does it need to be bidirectional?

2. Define your relationship implementation types y y
and add the Interface representation of each
association/collection to appropriate domain
objects (List, Set, Array, etc…)objects (List, Set, Array, etc…)

3. Create the mappings in the corresponding
object mapping files

4. If bidirectional, optionally add bidirectional
maintenance code

Collections in Domain Objectsj

• Must always use Interfaces y
– Collection, List, Map, Set, etc…

• Should be instantiated right away• Should be instantiated right away
– Not delegated to Constructor, Setter

Method etcMethod, etc…

List mylist = new ArrayList()

Mapping Multiplicitypp g p y

• 1:M/M:1
– Example: EBiller has many EBills / EBill has one EBiller
– On the ‘one’ side, map the Collection objects (EBiller)

• <one-to-many class="courses.hibernate.vo.EBill"/>

– On the ‘many’ side, map the single object (EBill)
• <many-to-one name="ebiller" column="EBILLER_ID"

class="courses.hibernate.vo.EBiller" />

• M:M
– Example: Account has many EBillers / EBiller has many

Accounts
– On both sides, map the Collection objects

• <many-to-many column="ACCOUNT_ID"
class="courses.hibernate.vo.Account" />

• <many-to-many column="EBILLER_ID"
class="courses.hibernate.vo.EBiller" />

• Only required on both sides if the relationship is bidirectional

Mapping Multiplicity 1:1pp g p y

• UNINTUITIVE MAPPING!
• Example:• Example:

– EBill has at most one AccountTransaction
– AccountTransaction has at most one EBill
– Foreign key exists on the EBill table (to AccountTransaction)Foreign key exists on the EBill table (to AccountTransaction)

• In the NON-STORING Entity mapping file (AccountTransaction)
– <one-to-one name="ebill"

class="courses.hibernate.vo.EBill"
property-ref="accountTransaction"/>

• In the STORING Entity mapping file (EBill)
– <many-to-one name="accountTransaction"

column="ACCOUNT_TRANSACTION_ID"
class="courses.hibernate.vo.AccountTransaction"/>

• Enforce one-to-one in the database with unique constraints
• If storing foreign keys on both sides, use two many-to-one tags.

Java-to-Database
Through HibernateThrough Hibernate
• Association & Collection mapping tags

practically identical
• Hibernate Collection Typesyp

– <set>
• Unordered/Ordered, requiring value column

– <map>
• Unordered/Ordered, requiring key and value

lcolumns
– <list>

Ordered requiring an index column on the• Ordered, requiring an index column on the
referenced object table

Java-to-Database Through Hibernate

– <array>
• Map to Java Type and Primitive Arrays• Map to Java Type and Primitive Arrays
• Ordered, requiring an index column on the

referenced object table
– <bag>

• No direct implementation available in Java
• Unordered/ordered collection allowing duplicatesUnordered/ordered collection allowing duplicates
• Realized through Collection/List
• Requires value column
idb– <idbag>
• Used for many-to-many relationships
• Same as Bag but with additional identifierSame as Bag, but with additional identifier

column used for surrogate keys
• Requires an ID Generator just like Entity classes

Association as <set>

• Maps to a ‘Set’ interface
l i l d hS S– Impls include HashSet, TreeSet, etc…

• Can be optionally sorted

EBill h EBill (1 M / M 1)EBiller has many EBills (1:M / M:1)

EBill Mapping
<many-to-one name="ebiller" column="EBILLER_ID"

class="courses.hibernate.vo.EBiller" />

EBiller Mapping
<set name="ebills" inverse="true"

sort="unsorted|natural|my.custom.MyComparator">
<key column="EBILLER_ID" not-null="true"/>
<one-to-many class="courses.hibernate.vo.EBill"/>

</set></set>

Association as <map>p

• Maps to a ‘Map’ interface
Impls include HashMap TreeMap etc– Impls include HashMap, TreeMap, etc…

• Must identify a column to be used for map key
– Can be ‘column’, or ‘formula’ (any sql expression)

C b ti ll t d• Can be optionally sorted
EBiller has many EBills (1:M / M:1)

EBill MappingEBill Mapping
<many-to-one name="ebiller" column="EBILLER_ID"

class="courses.hibernate.vo.EBiller" />

EBill M iEBiller Mapping
<map name="ebills" inverse="true"

sort="unsorted|natural|my.custom.MyComparator">
<key column="EBILLER_ID"/>
< k l "EBILL ID" t "l "/><map-key column="EBILL_ID" type="long"/>
<one-to-many class="courses.hibernate.vo.EBill"/>

</map>

Association as <list>

• Maps to a ‘List’ interface
Impls include ArrayList LinkedList etc– Impls include ArrayList, LinkedList, etc…

• MUST have a dedicated list-index column
on table

S ti l d i f it f th t ifi d– Sequential ordering of items for the parent specified
– Skipped numbers result in Null values in list

EBiller has many EBills (1:M / M:1)

EBill Mapping
<many-to-one name="ebiller" column="EBILLER_ID"

class="courses.hibernate.vo.EBiller" />

EBiller Mapping
<list name="ebills" inverse="true" >
<key column="EBILLER_ID" not-null="true"/>
<list-index column="EBILLER_EBILL_NUMBER"/>
<one-to-many class="courses.hibernate.vo.EBill"/>

</list>

Association as <array>y

• Like ‘List’, Arrays MUST have a dedicated
list-index column on table

EBiller has many EBills (1:M / M:1)

EBill Mapping
<many-to-one name="ebiller" column="EBILLER_ID"

class "courses hibernate vo EBiller" />class="courses.hibernate.vo.EBiller" />

EBiller Mapping
<array name="ebillsArray" inverse="true"><array name="ebillsArray" inverse="true">

<key column="EBILLER_ID"/>
<list-index column="EBILLER_EBILL_NUMBER"/>
<one-to-many class="courses.hibernate.vo.EBill"/>one to many class courses.hibernate.vo.EBill /

</array>

Association as <bag>g

• Must be mapped to a Collection or List
InterfaceInterface
– ‘List’ can be used in combination with ‘order-by’ to preserve

order
• Can be optionally sortedCan be optionally sorted

EBiller has many EBills (1:M / M:1)

EBill Mapping
<many-to-one name="ebiller" column="EBILLER_ID"

class="courses.hibernate.vo.EBiller" />

EBiller Mapping
<bag name="ebills" inverse="true" order-by="DUE_DATE ASC">

<key column="EBILLER_ID" not-null="true"/>
<one-to-many class="courses.hibernate.vo.EBill"/>y

</bag>

Association as <idbag>g

• Same as ‘Bag’ – but only used in many-to-many relationships
– Allows for mapping of surrogate keys on join table

Hib ill h id h j i bl– Hibernate will set the id on the join table
– Can NOT use idbag on both sides of the relationship! Non-idbag side must have

inverse=“true”
• Can be optionally sorted

EBill h A t / A t h EBill (M M)EBiller has many Accounts / Account has many EBillers (M:M)

EBill Mapping
<bag name="accounts" table="ACCOUNT_EBILLER" inverse="true">
<key column="EBILLER_ID"/>
<man to man col mn "ACCOUNT ID"<many-to-many column="ACCOUNT_ID"

class="courses.hibernate.vo.Account"/>
</bag>

Account Mapping
<idbag name="accounts" table="ACCOUNT EBILLER"

Remember inverse=true on ‘non-idbag’ side?

<idbag name="accounts" table="ACCOUNT_EBILLER"
order-by="DUE_DATE ASC" >

<collection-id column="ACCOUNT_EBILLER_ID" type="long">
<generator class="native"/>

</collection-id>
k l /<key column="EBILLER_ID"/>
<many-to-many column="ACCOUNT_ID"

class="courses.hibernate.vo.AccountOwner" />
</idbag>

Collection Mappingpp g

• Can be used across all mapping types
Just substitute relationship tag ()– Just substitute relationship tag (<one-to-many, <many-to-one> etc…)
with <element> tag

– No inverse required (not an ‘association’)

Previously Shown Association EBiller Mapping (EBiller:EBill)
<bag name="ebills" inverse="true" order-by="DUE_DATE">

<key column="EBILLER_ID" not-null="true"/>
<one-to-many class="courses hibernate vo EBill"/><one-to-many class="courses.hibernate.vo.EBill"/>

</bag>

Collection EBiller Mapping (stores balances across issued EBills)
<bag name "ebillBalances" table "EBILL"<bag name="ebillBalances" table="EBILL"

order-by="DUE_DATE">
<key column="EBILLER_ID"/>
<element column="BALANCE" type="double"/>

</bag></bag>

Bidirectional Maintenance

• Developers must maintain p
bidirectional associations in order to
keep in-memory objects up-to-datep y j p

aParent.getChildren().add(aChild);
aChild setParent(aParent);aChild.setParent(aParent);

Hib t d t t t• Hibernate recommends a strategy to
ensure this process.

Hibernate’s Bidirectional Strategy

• Maintain associations on a single side of the relationship
• Make ‘setMySet()’ protected• Make setMySet() protected
• Create ‘addObject’ method instead of

object.getMySet().add(object);
– Within addObject() set both relationshipsWithin addObject(), set both relationships

• p.120 of Java Persistence with Hibernate
Example EBillerEBill (1:M/M:1)

EBill (M 1)EBill (M:1)
protected void setEBiller(EBiller ebiller) {

this.ebiller = ebiller;
}

EBiller (1:M)
public void addEBill(EBill ebill) {

if (!ebill.getEBiller().equals(this) {
ebill.getEBiller().getEBills().remove(ebill);ebill.getEBiller().getEBills().remove(ebill);

}
ebill.setEBiller(this);
this.ebills.add(ebill);

}

Modified Hibernate Strategygy

• Hibernate strategy might not solve all cases
R l t d bj t i d t b i th k– Related objects are required to be in the same package

– Developers need to remember which object to call
• Modified Hibernate StrategyModified Hibernate Strategy

– Maintain relationship on either side
– Slightly varying implementations required for different

relationship types
• 1:1
• M:M• M:M

– Collections on both sides

• 1:M/M:1
– has single object that can potentially be null

• Collections should always be instantiated (early) – so
never null

Modified Bidirectional Strategy 1:1

• Need to handle potential null object on each side
– Objects might not be initializedObjects might not be initialized

Example: EBill has one Transaction / Transaction has one EBill

EBill Set Method
public void setTransaction(Transaction transaction) {
this.transaction = transaction;
if (transaction != null &&

(transaction.getEbill() == null ||
!transaction.getEbill().equals(this))) {

transaction.setEbill(this);
}

} Transaction Set Method
public void setEbill(EBill ebill) {
this.ebill = ebill;
if (ebill != null &&

(ebill.getTransaction() == null ||
!ebill.getTransaction().equals(this))) {

ebill.setTransaction(this);
}

}

Modified Bidirectional Strategy M:M

• Protected Setters for Collections on both sides
• Do not need to handle null checks

– Collections should be initialized early

Example: Account has many EBillers / EBiller has many Accounts

EBiller Set Method
protected void setAccounts(List<Account> accounts) {
this.accounts = accounts;

}
EBiller Add Method
public void addAccount(Account account){
this.accounts.add(account);
if (!account.getEbillers().contains(this)) {

account.addEbiller(this);

EBiller Remove Method
public void removeAccount(Account account) {

this.accounts.remove(account);

}
}

if (account.getEbillers().contains(this)) {
account.removeEbiller(this);

}
}

Modified Bidirectional Strategy M:M

• Protected Setters for Collections on both sides
• Do not need to handle null checks

– Collections should be initialized early

Example: Account has many EBillers / EBiller has many Accounts

Account Setter

Account Add Method

protected void setEbillers(List<EBiller> ebillers) {
this.ebillers = ebillers;

}

public void addEbiller(EBiller ebiller) {
this.ebillers.add(ebiller);
if (!ebiller.getAccounts().contains(this)) {

ebiller.addAccount(this);

Account Remove Method
public void removeEbiller(EBiller ebiller) {
this.ebillers.remove(ebiller);

}
}

if (ebiller.getAccounts().contains(this)) {
ebiller.removeAccount(this);

}
}

Modified Bidirectional Strategy 1:M

• Protected Setter for Collection
• Need to handle null check on non-Collection side

– Object may not have been initialized

Example: EBiller has many EBills / EBill has one EBiller

EBill Setter
public void setEbiller(EBiller ebiller) {
this.ebiller = ebiller;
if (ebiller != null && !ebiller.getEbills().contains(this)) {

ebiller.addEbill(this);
}

}

Modified Bidirectional Strategy 1:M

• Protected Setter for Collection
• Need to handle null check on non-Collection side

– Object may not have been initialized

Example: EBiller has many EBills / EBill has one EBiller
EBiller Set Method
protected void setEbills (SortedSet<EBill> ebills) {
this.ebills = ebills;

}
EBiller Add Method
public void addEbill(EBill ebill) {public void addEbill(EBill ebill) {
this.ebills.add(ebill);
if (!ebill.getEBiller().equals(this) {

ebill.getEBiller().getEBills().remove(ebill)
ebill setEbiller(this);ebill.setEbiller(this);

}
}

EBiller Remove Method
public void removeEbill(EBill ebill) {
ebills.remove(ebill);
if (ebill.getEbiller().equals(this)) {

ebill.setEbiller(null);
}

}

Bidirectional Concern

• Recursive Issue
Objects commonly refer to attributes contained within– Objects commonly refer to attributes contained within
themselves during method execution

– Can result in StackOverflowException
C ()• hashCode()

• toString()
• equals()

Hib t ’ t t f tti bidi ti lit• Hibernate’s strategy for setting bidirectionality

– Hibernate recommends NOT using associate objects in these
methods

– For 1:M, on the many side, set ‘access by field’ on the
<many-to-one> tag.

• In all, bidirectionality can be powerful, butIn all, bidirectionality can be powerful, but
complicated and overly involved to handle
– Ask yourself, does this really need to be bidirectional?

© 2009 coreservlets.com

Additi l M M O tiAdditional M:M Options

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Many-to-Many Optiony y p

• Hibernate actually recommends not
i t diti l tusing traditional many-to-many

relationships
• Proposes use of “Intermediate

Associations”
– Relationships often have data directly tied to

them. If not, likely to later, so might as well start
with this approachwith this approach

– “Intermediate” object to map the relationship
Can be accomplished in one of two ways– Can be accomplished in one of two ways

• Composite element
• Entity class

Intermediate Association:
CompositeComposite

• Customer:Contractor (M:M)
P t bj t t i C ll ti f “C t t”• Parent object contains a Collection of “Contract”
objects
– Each “Contract” object contains the Customer, Contractor, and j , ,

data about the relationship (start date, contract price, etc…)

MAPPING FOR CUSTOMER
bl<set name="contracts" table="CUSTOMER_CONTRACTOR">

<key column="customer_id"/>
<composite-element class="Contract">

<parent name="customer"/>
<many-to-one name="contractor" column="contractor_id"

not-null="true" class="Contractor"/>
<property name="startDate" column="start_date" type="date"/>
<property name="price" column="price" type="string"/><property name="price" column="price" type="string"/>

</composite-element/>
</set>

Intermediate Association:
CompositeComposite

• Advantages
– Lifecycle of composite element is tightly coupled toLifecycle of composite element is tightly coupled to

parent object
• To create an association, add a new Contract to the

Collection

Contract aContract =
new Contract(aCustomer, aContractor);

aCustomer.getContracts().add(aContract);

• To delete, remove from Collection
– aCustomer.getContracts().remove(aContract);

• Disadvantages• Disadvantages
– Bidirectional navigation is impossible

• Composite element only exists within the context of the
parent classp

• However – can write a query to retrieve the objects you
need

Intermediate Association:
Entity ClassEntity Class
• Customer:Contractor (M:M)

Realized through two one to many relationships– Realized through two one-to-many relationships
• Each side contains a Collection of Contract

objects
E h C t t bj t t i th C t– Each Contract object contains the Customer,
Contractor, and data about the relationship (start
date, contract price, etc…)

MAPPING FOR CUSTOMER
<set name="contracts" inverse="true">

<key column="customer_id"/>
<one-to-many class="Contract"/>

</set>

MAPPING FOR CONTRACTOR
<set name="contracts" inverse="true">

<key column="constractor id"/><key column= constractor_id />
<one-to-many class="Contract"/>

</set>

Intermediate Association:
Entity ClassEntity Class

MAPPING FOR CONTRACT (Relationship Entity)
<class name "Contract" table "CUSTOMER CONTRACTOR"<class name="Contract" table="CUSTOMER_CONTRACTOR"

mutable="false">
<id name="contractId" column="CUSTOMER_CONTRACTOR_ID">

<generator class="native"/>
</id>
<property name="startDate" column="start_date"

type="date"/>
<property name="price" column="price" p p y p p

type="string"/>
<many-to-one name="customer" column="customer_id"

not-null="true" update="false"/>
<many-to-one name="contractor" column="contractor id"<many to one name contractor column contractor_id

not-null="true" update="false"/>
</class>

NOTICE CONTRACT HAS ITS OWN ID – (Think “Entity”)

Intermediate Association:
Entity ClassEntity Class

• Advantages
– Bidirectional capabilitiesBidirectional capabilities

• Both objects obtain other through Contract
aContractor.getContracts()

aCustomer.getContracts()g

• Disadvantages
– No direct access to collection on other side (need to loop through all

the Contract objects to build collection)
– More complex code needed to manage the Contract entity instance

to create and remove associations
• Requires additional infrastructure code

E tit Cl (C t t)– Entity Class (Contract)
– Identifier

• Intermediate class has to be saved and deleted independently to
create links between objectsj

Contract aContract = newContract(aCustomer.getCustomerId(),
aContractor.getContractorId());

session.save(aContract);

Ternary Relationshipsy p

• Relationship across three objectsRelationship across three objects
• Leverage the Intermediate Association to

include a reference to an additional third
Entity

Customer ContractorContract

Sales Rep

Ternary Relationshipsy p

MAPPING FOR CONTRACT (Relationship Entity)
<class name="Contract" table="CUSTOMER_CONTRACTOR"

mutable="false">
<id name="contractId" column="CUSTOMER_CONTRACTOR_ID">

l i /<generator class="native"/>
</id>
<property name="startDate" column="start_date"

type="date"/>type="date"/>
<property name="price" column="price" type="string"/>
<many-to-one name="customer" column="customer_id"

not-null="true" update="false"/>not null true update false />
<many-to-one name="contractor" column="contractor_id"

not-null="true" update="false"/>
<many-to-one name="salesRep" column="sales_rep_id"

not-null="true" update="false"/>
</class>

© 2009 coreservlets.com

WWrap-up

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Summaryy

In this lecture, we:
• Learned that Associations are relationships• Learned that Associations are relationships

between Entity classes and Collections are just
groupings of scalar data

• Looked at the way Java and databases realize• Looked at the way Java and databases realize
relationships
– Java: Object references

Databases: Denormalized tables foreign keys join tables– Databases: Denormalized tables, foreign keys, join tables,
and ad hoc joins

• Walked through the ways to realize
relationships with Hibernaterelationships with Hibernate
– Setting up the mapping files
– Coding to Interfaces

• Discussed some Hibernate recommended• Discussed some Hibernate recommended
approaches using an ‘intermediate’ object to
realize M:M and ternary relationships

Preview of Next Sections

• Understand the differences
between Component & Entity
classesclasses

• Learn how to map Components
Walk through ways of realizing• Walk through ways of realizing
inheritance

54

© 2009 coreservlets.com

Q ti ?Questions?

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

