
For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

JavaScript
Basic Syntax –

Part 2
Originals of Slides and Source Code for Examples:

http://courses.coreservlets.com/Course-Materials/ajax.html

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

For customized training related to JavaScript or
Java, email hall@coreservlets.com

Marty is also available for consulting and development support

Taught by lead author of Core Servlets & JSP,
co-author of Core JSF (4th Ed), and this tutorial.

Available at public venues, or
custom versions can be held on-site at your organization.

• Courses developed and taught by Marty Hall
– JavaScript, jQuery, Ext JS, JSF 2.3, PrimeFaces, Java 8 programming,

Spring Framework, Spring MVC, Android, GWT, custom mix of topics
– Courses available in any state or country.
– Maryland/DC companies can also choose afternoon/evening courses.

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Hadoop, Hibernate/JPA, HTML5, RESTful Web Services

Contact hall@coreservlets.com for details

4

Topics in This Section
• Array basics
• Strings
• Regular expressions
• Array methods

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Array Basics

6

Array Basics
• One-step array allocation

var primes = [2, 3, 5, 7, 11, 13];
var names = ["Joe", "Jane", "John", "Juan"];
• No trailing comma after last element

• Accessing array elements
primes[0] 2
primes[5] 13
names[0] "Joe";
names[3] "Juan";
names[3] = "Jill"; // Replace entry at index 3
names[3] "Jill";

• The length property
var names = ["Joe", "Jane", "John", "Juan"];
names.length 4
• Notice that if the length is 4, the index of the last entry is 3
• This is true in general: array indexes run from 0 to length-1

7

Looping Down Arrays

• Traditional-style for loop

– Roughly same as in Java and other languages. Don’t forget the “var” before the i.

for(var i=0; i<someArray.length; i++) {

var value = someArray[i];

doSomethingWith(value);

}

• JavaScript-specific for loop (“the Lindsay loop”)

– Relies on fact that a nonexistent array index results in a value of undefined (not an
exception) and that undefined means “false” in a test.

for(var i=0, value; value=someArray[i]; i++) {

doSomethingWith(value);

}

8

Looping Down Arrays

• for-in loop
for(var i in array) {

doSomethingWith(i);

}

• Usually reserved for objects (covered later)

– Not recommended for looping down normal arrays
• The values of i above are the indexes, not the array values

• JavaScript has “array-like objects” that you normally treat as arrays, but that can have
extra properties other than the indexes, and these extra properties will show up as
values for i above.

9

Two-Step Array Allocation
• Idea

– First build empty array, then fill in the elements
– Often used in real life, because you frequently do not know the array elements or

even the array size until after doing some calculations, so one-step array allocation
will not work

• Simple example
var names = new Array(4);
names[0] = "Joe";
names[1] = "Jane";
names[2] = "John";
names[3] = "Juan";

• More typical example
var names = new Array(4);
for(var i=0; i<names.length; i++) {

names[i] = someCalculation();
}

10

More on Arrays
• Arrays can be sparse

var names = new Array();
names[0] = "Joe";
names[100000] = "Juan";

• Arrays can be resized
– Regardless of how arrays is created, you can do:

myArray.length = someNewLength;

myArray[anyNumber] = someNewValue;

myArray.push(someNewValue)
– These are legal regardless of which way myArray was made

11

More on Arrays (Continued)

• Arrays have methods
– push, pop, concat, slice, reverse, sort, forEach, map, filter, reduce

• See upcoming slides

• Regular objects can be treated like arrays
– You can use numbers (indexes) as object properties

• More on this when we cover objects

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Strings

13

String Basics
• You can use double or single quotes

var names = ["Joe", 'Jane', "John", 'Juan'];

• Strings have length property
"foobar".length 6

• Numbers can be converted to strings
– Automatic conversion during concatenations.

var val = 3 + "abc" + 5; // Result is "3abc5"

– Conversion with fixed precision
var n = 123.4567;
var val = n.toFixed(2); // Result is 123.46 (not 123.45)

14

String Basics (Continued)

• Strings can be compared with ==
"foo" == 'foo'

// returns true

• Strings can be converted to numbers
var i = parseInt("37 blah");

// Result is 37 – ignores blah
var d = parseFloat("6.02 blah");

// Result is 6.02 – ignores blah

15

Core String Methods

• Simple methods
– charAt, indexOf, lastIndexOf, substring, toLowerCase, toUpperCase

"hello".charAt(1); "e“
"hello".indexOf("o"); 4 // Returns -1 if no match
"hello".substring(1,3); "el"
"hello".toUpperCase(); "HELLO"

• Methods that use regular expressions
– match, replace, search, split

• HTML methods
– anchor, big, bold, fixed, fontcolor, fontsize, italics, link, small, strike, sub, sup

"test".bold().italics().fontcolor("red")
 '<i>test</i>'

– These are technically nonstandard methods, but supported in all major browsers
• But I prefer to construct HTML strings explicitly anyhow

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Regular Expressions

17

Regular Expressions: Overview
• You specify a regexp with /pattern/

– Not with a String as in Java and many other languages

• Most special characters same as in Java/Unix/Perl
– ^, $, . – beginning, end of string, any one char

– \ – escape what would otherwise be a special character

– *, +, ? – 0 or more, 1 or more, 0 or 1 occurrences

– {n}, {n,} – exactly n, n or more occurrences

– [] – grouping

– \s, \S – whitespace, non-whitespace

– \w, \W – word char (letter or number), non-word char

• Modifiers
– /pattern/g – do global matching (find all matches, not just first one)

– /pattern/i – do case-insensitive matching

– /pattern/m – do multiline matching

18

String Methods that Use Regular Expressions
• replace

– Replaces all places that match the regular expression with a replacement string
"axbxxcxxxd".replace(/x+/g, "q") "aqbqcqd"

• match
– Returns array of parts of the String that match the regular expression

"axbxxcxxxd".match(/x+/g) ["x", "xx", "xxx"]

• split
– Returns array of all parts of the String that are in between the regular expressions

"axbxxcxxxd".split(/x+/) ["a", "b", "c", "d"]

• search
– Returns the position of the first place that matches the regular expression

"axbxxcxxxd".search(/x+/) 1

Regular Expression: Examples

20

More Information on Regular Expressions

• Online API references given earlier
(See RegExp class)
– http://www.w3schools.com/jsref/jsref_obj_regexp.asp

– http://www.devguru.com/technologies/ecmascript/QuickRef/regexp.html

• JavaScript Regular
Expression Tutorials
– http://www.evolt.org/article/

Regular_Expressions_in_
JavaScript/17/36435/

– http://www.javascriptkit.com/
javatutors/re.shtml

From Randall Munroe and xkcd.com

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Array Methods

22

Big Idea
• In JavaScript, arrays can have methods

– Not functions to which you pass arrays, but methods of arrays
var nums = [1,2,3];
nums.reverse(); [3,2,1]

[1,2,3].reverse(); [3,2,1]

• Most important methods
– push, pop
– sort
– forEach
– map
– filter
– reduce

Many more details at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

23

push, pop, join

• push
var nums = [1,2,3];
nums.push(4);
nums; [1,2,3,4]

• pop
var val = nums.pop();
val; 4
nums; [1,2,3]

• concat
var nums2 = nums.concat([4,5,6]);
nums2; [1,2,3,4,5,6]
nums; [1,2,3]

24

sort
• With no arguments (default comparisons)

– Note the odd behavior with numbers: they are sorted lexicographically, not
numerically

["hi","bye","hola","adios"].sort();

 ["adios","bye","hi","hola"]

[1,-1,-2,10,11,12,9,8].sort();

 [-1,-2,1,10,11,12,8,9]

25

sort (Continued)
• With function as argument

– Function returns negative if first of two compared items should go first, positive if
second should go first, zero if they are tied. More on functions in upcoming lecture.

var nums = [1,-1,-2,10,11,12,9,8];

function difference(n1,n2) { return(n1-n2); }

function reverseDifference(n1,n2) { return(n2-n1); }

nums.sort(difference);

 [-2, -1, 1, 8, 9, 10, 11, 12]

nums.sort(reverseDifference);

 [12, 11, 10, 9, 8, 1, -1, -2]

26

Sorting: Java 8 vs. JavaScript
• Java 8
String[] testStrings = {"one", "two", "three", "four"};

Arrays.sort(testStrings,

(s1, s2) -> s1.length() - s2.length());

Arrays.sort(testStrings,

(s1, s2) -> s1.charAt(s1.length() - 1) –

s2.charAt(s2.length() - 1));

• JavaScript
var testStrings = ["one", "two", "three", "four"];

testStrings.sort(function(s1, s2) {

return(s1.length - s2.length);});

testStrings.sort(function(s1, s2) {

return(s1.charCodeAt(s1.length - 1) -

s2.charCodeAt(s2.length - 1));

});

First variation of each sorts by length, second variation sorts by last character.

27

forEach
• Big idea

– Calls function on each element of array. Cannot break “loop” partway through
• Lacks option to run in parallel that Java 8 has

• Examples
[1,2,3].forEach(function(n) { alert(n); });

• Pops up alert box in page 3 times showing each number

[1,2,3].forEach(alert);
• Same as above. Explained in later section on functions.

– Summing an array (but reduce can also be used)
var nums = [1,2,3];
var sum = 0;
nums.forEach(function(n) { sum += n; });
sum; 6

28

map
• Big idea

– Calls function on each element, then accumulates result array of each of the outputs.
Returns new array; does not modify original array.

• Like the Java 8 “map” method, but not as powerful since the JavaScript version does
not support lazy evaluation or parallel operations.

• Examples
function square(n) { return(n * n); }
[1,2,3].map(square);
 [1, 4, 9]

29

filter

• Big idea
– Calls function on each element, keeps only the results that “pass” (return true for)

the test. Returns new array; does not modify original array.
• Like the Java 8 “filter” method, but not as powerful since the JavaScript version does

not support lazy evaluation or parallel operations.

• Examples
function isEven(n) { return(n % 2 == 0); }
[1,2,3,4].filter(isEven);
 [2, 4]

30

Notes on map and filter
• Cheaper if you combine mapping operations

var singleCost = someArray.map(combinedFunction);
var doubleCost = someArray.map(funct1).map(funct2);

• Cheaper if you combine filtering tests
var singleCost = someArray.filter(combinedTest);
var doubleCost = someArray.filter(test1).filter(test2);

• Wasteful on large arrays if you need only one result
var firstResult = largeArray.filter(test).map(funct)[0];

• Points seem obvious, but none are true in Java 8
– Two calls to map vs. one call with a combined function: same cost
– Two calls to filter vs. one call with a combined test: same cost
– Finding first element of result of series of mapping and filtering operations:

cost depends only on location of first match, not on size of original array
• For more detail, see Java 8 tutorial at coreservlets.com

31

reduce

• Big idea
– Takes function and starter value. Each time, passes accumulated result and next

array element through function, until a single value is left.
• Like the Java 8 “reduce” method, but not as powerful since the JavaScript version does

not support lazy evaluation or parallel operations.

• Examples
function add(n1,n2) { return(n1 + n2); }
function multiply(n1,n2) { return(n1 * n2); }
function bigger(n1,n2) { return(n1> n2 ? n1 : n2); }
var nums = [1,2,3,4];
var sum = nums.reduce(add, 0); // 10
var product = nums.reduce(multiply, 1); // 24
var max = nums.reduce(bigger, -Number.MAX_VALUE); // 4

32

Notes on reduce
• Backward args from Java 8 and some other languages

– In Java 8, reduce takes starter value (identity) first, combiner function second
– JavaScript takes combiner function first, starter value second

• There is one-arg version
– Both the JavaScript and Java 8 versions of reduce let you omit the starter value, but

then you have to worry about what to do if there are no values in the array

• reduceRight method
– Goes in opposite order: from highest index to lowest

• Other names
– Some other languages call this “fold” or “inject” instead of “reduce”

33

More Array Methods

• concat
– Concatenates arrays

[1,2,3].concat([4,5,6]); [1,2,3,4,5,6]

• slice
– Returns sub-array

[9,10,11,12].slice(0, 2); [9,10]
[1,2,3].slice(0); [1,2,3] // Makes copy of array

• reverse
– Reverses array (returns it, but also changes original)

[1,2,3].reverse(); [3,2,1]

• indexOf
– Finds index of matching element

[9,10,11].indexOf(10); 1
[9,10,11].indexOf(12); -1

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Wrap-up

35

Summary

• JavaScript arrays
– One step allocation

var nums = [1, 2, 3];

– Looping down arrays
for(var i=0; i<nums.length; i++) { doSomethingWith(nums[i]); }

– Two-step allocation
var nums = new Array(12);
for(var i=0; i<nums.length; i++) { nums[i] = someCalculation(); }

– There are useful array methods, especially push, pop, sort, map, filter, and reduce

• Strings
– Either single or double quotes are legal. There are some useful String methods

• Regular expressions
– Used for comparing to patterns

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Questions?
More info:

http://www.coreservlets.com/javascript-jquery-tutorial/ -- Tutorial on JavaScript, jQuery, and jQuery UI
http://courses.coreservlets.com/Course-Materials/java.html – General Java programming tutorial

http://www.coreservlets.com/java-8-tutorial/ – Java 8 tutorial
http://courses.coreservlets.com/java-training.html – Customized Java training courses, at public venues or onsite at your organization

http://coreservlets.com/ – JSF 2, PrimeFaces, Java 8, JavaScript, jQuery, Ext JS, Hadoop, RESTful Web Services, Android, HTML5, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training
Many additional free tutorials at coreservlets.com (JSF, Android, Ajax, Hadoop, and lots more)

