
For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

jQuery Ajax Support:
Advanced Capabilities

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

For customized training related to JavaScript or
Java, email hall@coreservlets.com

Marty is also available for consulting and development support

Taught by lead author of Core Servlets & JSP,
co-author of Core JSF (4th Ed), and this tutorial.

Available at public venues, or
custom versions can be held on-site at your organization.

• Courses developed and taught by Marty Hall
– JavaScript, jQuery, Ext JS, JSF 2.3, PrimeFaces, Java 8 programming,

Spring Framework, Spring MVC, Android, GWT, custom mix of topics
– Courses available in any state or country.
– Maryland/DC companies can also choose afternoon/evening courses.

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Hadoop, Hibernate/JPA, HTML5, RESTful Web Services

Contact hall@coreservlets.com for details

4

Topics in This Section
• Displaying temporary messages during Ajax requests
• Handling JSON data
• Example: static JSON data
• Example: dynamic JSON data
• $.ajax options
• Ajax shortcut functions

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Displaying Temporary
Messages During Ajax

Requests

6

Showing “Getting Data…” Message While Waiting
• Idea

– You have slow server operation
– Display animated GIF and message when request sent
– Hide GIF and message when response completes

• Approach
– Get animated GIF

• http://ajaxload.info/ lets you build your own with unrestricted use

– Display image plus message in region that has “display: none”
• So it is hidden initially

– Before sending Ajax request, change region to use “display: inline”
• Use $(selector).show()

– When request finishes, hide the region again
• Use $(selector).hide() from complete: handler (not success:)

7

Temporary Data: HTML
…
<fieldset>
<legend>$.ajax: Showing Temporary Messages</legend>
<input type="button" value="Show Time (Slow)"

id="slow-time-button"/>
<h2 id="working" style="display: none">

Waiting for server...

</h2>
<h2 id="slow-time-result"></h2>

</fieldset>

8

Temporary Data: JavaScript
$(function() {

$("#slow-time-button").click(showTime3); …
});

function showTime3() {
var workingRegion = "#working";
var resultRegion = "#slow-time-result";
$(resultRegion).html(""); // Erase any previous results
$(workingRegion).show();
$.ajax({
url: "server-time-slow.jsp",
success: function(text) { $(resultRegion).html(text); },
complete: function() { $(workingRegion).hide(); }

});
}

9

Temporary Data: JSP (server-time-slow.jsp)
<% try { Thread.sleep(5000);

} catch(Exception e) {} %>
It is now <%= new java.util.Date() %>

This waits five seconds, then outputs a string
showing the current date and time.

Temporary Messages: Results

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Handling JSON
Data: Overview

12

Content-Centric vs. Data-Centric Ajax
• Content-centric Ajax

– The server-side program builds the exact content we need
• Simple string or chunk of HTML

– The client-side JavaScript merely inserts the server content into the page verbatim
• Without examining it or modifying it

• Data-centric Ajax
– The server-side program sends raw data

• JSON is the most common format, but you could also send XML or a string containing
a custom data format

– The client-side JavaScript reads the data, then builds a simple string or a chunk of
HTML based on that data

– This string (built by the JavaScript code, not returned directly by server) is what is
inserted into the page

13

Recap: Strict JSON
• Strict JSON according to json.org

– Subset of JavaScript where
• Object property names must be in double quotes
• Strings use double quotes only (not single quotes)

– This is what recent jQuery versions and JSON.parse support
• jQuery automatically uses JSON.parse when you specify dataType: "json"
• If the JSON data has any errors, the Ajax request fails and the success handler

function is never invoked

– Since this is what is clearly described at json.org, you should follow this format
when sending JSON from the server.

• MIME type for JSON from server
– RFC 4627 says JSON responses should have "application/json" MIME type
– No known libraries enforce this

14

Data-Centric Ajax with JSON: Approach
• Server

– Returns strict JSON object containing data. E.g.:
{ "cto": "Resig ", "ceo": "Gates ", "coo": "Ellison" }

• Code that calls $.ajax
– Specifies dataType of json. E.g.:

$.ajax({ url: address, success: handler, dataType: "json" });

• Response handler
– Receives JavaScript data as first argument. No need for JSON.parse or eval. Must

build HTML or plain strings from the result. E.g.:
function handler(companyExecutives) {

$("#some-id").html("Chief Technology Officer is " +
companyExecutives.cto + "");

}

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Handling JSON
Data: Example
with Static Data

16

Overview
• Server-side file (executives.json)

– Returns static JSON object with properties that show company executives
• File extension of “.json” is just for documentation; executives.txt would also work

• Client-side JavaScript code
– Main function calls to server-side program and specifies dataType: "json"
– Handler function takes the JSON object and builds a <h2> heading based on the cto

property of the JSON data

• HTML
– Has button to start the process
– Has named region where result will be shown

17

Server File (executives.json)
{ "cto": "Resig ", "ceo": "Gates ", "coo": "Ellison" }

The file extension (.json) is just to remind the developers that it contains JSON. It would work equally well with .txt.

However, it is necessary that the file contains strict JSON: quotes around property names and double, not single, quotes.

18

Static JSON Example: JavaScript
$(function() {

$("#cto-button").click(showCto); ...
});

function showCto() {
$.ajax({ url: "executives.json",

dataType: "json",
success: showCtoHeading });

}

function showCtoHeading(companyExecutives) {
$("#cto-result").html("<h2>Chief Technology Officer is " +

companyExecutives.cto + "</h2>");
}

The response handler is passed a JavaScript object, not a string.
The object was built behind-the-scenes in jQuery by using JSON.parse.

19

Static JSON Example: HTML
<fieldset>
<legend>Treating Response as JSON: Static Data</legend>
<input type="button" value="Show CTO"

id="cto-button"/>
<div id="cto-result"></div>

</fieldset>

Static JSON Example: Results

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Handling JSON
Data: Example

with Dynamic Data

22

Overview
• Server-side program

– Returns complex JSON object with values that change randomly

• Client-side JavaScript code
– Main function calls to server-side program and specifies dataType: "json"
– Handler function reads the JSON object and builds a list based on the

information
• Object contains a font size (number) and colors (strings) that will be used to control the

look of the list
• Object contains array of numbers that become the elements

• HTML
– Has button to start the process
– Has named region where result will be shown

23

Typical Server Result (show-nums)
{ "fg": "lime",
"bg": "blue",
"fontSize": 32,
"numbers": [0.9830393089180433,

0.204857758495537,
0.2637957765810426]

}

24

Dynamic JSON Example: Auxiliary JavaScript
function makeList(fg, bg, fontSize, nums) {
return(listStartTags(fg, bg, fontSize) +

listItems(nums) +
listEndTags());

}

function listStartTags(fg, bg, fontSize) {
return(

"<div style='color:" + fg + "; " +
"background-color:" + bg + "; " +
"font-size:" + fontSize + "px'>\n" +

"\n");
}

25

Dynamic JSON Example : Auxiliary JavaScript (Continued)
function listItems(items) {
var result = "";
for(var i=0; i<items.length; i++) {

result = result + "" + items[i] + "\n";
}
return(result);

}

function listEndTags() {
return("</div>");

}

26

Dynamic JSON Example: Core JavaScript
$(function() { …

$("#nums-button").click(showNums); ...
});

function showNums() {
$.ajax({ url: "show-nums",

dataType: "json",
success: showNumberList });

}

function showNumberList(jsonData) {
var list = makeList(jsonData.fg, jsonData.bg,

jsonData.fontSize, jsonData.numbers);
$("#nums-result").html(list);

}

Strings

Whole number

Array of numbers

27

Dynamic JSON Example : HTML
<fieldset>

<legend>Treating Response as JSON: Dynamic Data</legend>

<input type="button" value="Show Nums"

id="nums-button"/>

<div id="nums-result"></div>

</fieldset>

28

Dynamic JSON Example: Servlet
public class ShowNumbers extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setHeader("Cache-Control", "no-cache");
response.setHeader("Pragma", "no-cache");
String fg = ColorUtils.randomColor();
request.setAttribute("fg", fg);
String bg = ColorUtils.randomColor();
request.setAttribute("bg", bg);
String fontSize = "" + (10 + ColorUtils.randomInt(30));
request.setAttribute("fontSize", fontSize);
double[] nums = { Math.random(), Math.random(), Math.random() };
request.setAttribute("nums", nums);
response.setContentType("application/json");
String outputPage = "/WEB-INF/results/show-nums.jsp";
RequestDispatcher dispatcher = request.getRequestDispatcher(outputPage);
dispatcher.include(request, response);

}
}

It is not expected that non-
Java programmers will
understand this code!

Just understand the
earlier slide titled “Typical
Server Result” – this code
produces JSON with a
random fg property
(string), a random bg
property (string), a
random fontSize (whole
number), and a random
numbers property (array
containing 3 random
numbers).

29

Dynamic JSON Example : JSP
{ "fg": "${fg}",

"bg": "${bg}",

"fontSize:" ${fontSize},

"numbers": [${nums[0]}, ${nums[1]}, ${nums[2]}]

}

• Notes
– Quotes around property names. Double, not single, quotes
– Client-side code does not need to call JSON.parse. JSON evaluation handled

automatically by jQuery
– Types

• fg and bg: Strings
• fontSize: int
• numbers: Array of doubles

30

Dynamic JSON Example: Auxiliary Java Code
public class ColorUtils {
private static String[] colors = {
"aqua", "black", "blue", "fuchsia", "gray",
"green", "lime", "maroon", "navy", "olive",
"purple", "red", "silver", "teal", "white", "yellow" };

/** One of the official HTML color names, at random. */

public static String randomColor() {
return(RandomUtils.randomElement(colors));

}

private ColorUtils() {} // Uninstantiatable class}
}

31

JSON Example Code: Auxiliary Java Code
public class RandomUtils {
private static Random r = new Random();

public static int randomInt(int range) {
return(r.nextInt(range));

}

public static int randomIndex(Object[] array) {
return(randomInt(array.length));

}

public static <T> T randomElement(T[] array) {
return(array[randomIndex(array)]);

}
}

Dynamic JSON Example: Results

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

$.ajax
Options

34

Overview
• Options (almost) always used: url, success

$.ajax({url: "some-address", success: someFunction});
• success is not strictly required; you might want to just fire off some data to the server

and not display anything

• Common options: example
$.ajax({

url: "address",
success: successHandlerFunction,
data: { param1: "foo bar", param2: "baz“ },
error: errorHandlerFunction,
cache: false,
dataType: "json",
username: "resig",
password: "scriptaculous-fan" });

35

Options
Name Description Default

async Should the request be asynchronous? Use synchronous requests with
caution since they lock up the browser.

true

beforeSend Function to modify XMLHttpRequest object before it is sent (e.g., to set
custom headers). The XHR is automatically passed to function.

None

cache Is browser permitted to cache the page? Set to false if you use GET and
you could get different responses back from the same data. Equivalent to
having the server send Cache-Control: no-cache and Pragma: no-cache.

true
(except false if dataType

is script or json)

complete Function to be called after error or success function is finished. None

contentType Content-Type of data sent to server. Rarely needed. application/
x-www-form-urlencoded

data Data to send to server (possibly after conversion). Sent in the
appropriate place depending on whether it is GET or POST. Can be a
String or an object. If a String, sent unchanged. If an object, property
names become param names and property values get URL-encoded and
become param values. & and = inserted automatically. If a value is an
array, it is serialized with repeated param names.

Empty

36

Options (Continued)

Name Description Default

dataFilter Response-data sanitizing function. Rarely used. None

dataType The format in which to pass the response to the handler function. Legal values are text, html
(same as text except embedded scripts are run), xml, json, jsonp (JSON with Padding), and
script (evaluates the response as JavaScript and returns it as plain text).

html, xml, or
json (makes
intelligent guess)

error Function to be called if request fails. Function is passed 3 args: the XHR object, a string
describing the error type, and an optional exception object. Possible values for the second
argument are null, "timeout", "error", "notmodified" and "parsererror".

None

global jQuery lets you set global defaults for various handlers: should they be used if set? true

ifModified Should the request be considered successful only if the response has changed since the last
request (based on the Last-Modified header)?

false

jsonp Override the callback function name in a jsonp request. JSONP is a JSON extension in which
the name of a callback function is specified as an input argument of the call itself.

callback

password
username

Username and password to be used in response to HTTP authentication request. None

37

Options (Continued)
Name Description Default

processData Should the value of the “data” property, if an object, be turned into a URL-encoded query
string?

true

scriptCharset Forces the request to be interpreted as a certain charset. Only for requests with dataType
of “jsonp” or “script” and type of “GET”.

None

success Function to be called if request succeeds. Function passed 3 args: the data returned from
the server (formatted according to the dataType property), a string describing the status,
and the XHR.

None

timeout Timeout in milliseconds. If request takes longer, the error handler will be called instead of
the success handler.

Global timeout, if
set via $.ajaxSetup

traditional Should data with arrays be serialized in traditional manner (shallow), or recursively
(deep).

false

type The HTTP method to use for the request. “get” and “post” are main options, but some
browsers support other methods.

get

url The address to request. Should be a relative URL. None

xhr Callback for creating your own custom XMLHttpRequest object. ActiveXObject if
available (IE),

XMLHttpRequest
otherwise

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Ajax Shortcut
Functions

39

Shortcuts for $.ajax: Equivalent Forms
• $.get

$.get("url", dataObj, someFunct)
$.ajax({url: "url", data: dataObj, success: someFunct});

• $.post
$.post("url", dataObj, someFunct)
$.ajax({url: "url", data: dataObj, success: someFunct,

type: "post"});

• $.getJSON
$.getJSON("url", dataObj, someFunct)
$.ajax({url: "url", data: dataObj, success: someFunct,

dataType: "json"});

• Note
– get and post take the type as an optional fourth argument

40

Pros and Cons of Shortcuts
• Advantages of shorthand functions

– Shorter and (arguably) clearer

• Disadvantages of shorthand functions
– If you want additional options later, or you want to switch from GET to POST or

vice versa, you have to change existing code more drastically
– There is no direct argument for supplying error handler. Instead, you must call

ajaxError to set up error handler
– If you don’t have data, you have to pass in null. This is less convenient than just

omitting the “data” property entirely
$.get("url", null, someHandler);
vs.
$.ajax({url: "url", success: someHandler});

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Wrap-Up

42

Summary
• Showing temporary messages

$(resultRegion).html(""); // Erase any previous results
$(workingRegion).show();
$.ajax({

url: "server-time-slow.jsp",
success: function(text) { $(resultRegion).html(text); },
complete: function(text) { $(workingRegion).hide(); }

});

• Dealing with JSON from the server
– Call to server with dataType: "json"
– Have handler function take a JavaScript object, not a string
– Build HTML or string based on the data
– Insert that resultant string into the page

For additional materials, please see http://www.coreservlets.com/. The JavaScript tutorial section contains
complete source code for all examples in the entire tutorial series, plus exercises and exercise solutions for each topic.

coreservlets.com – custom onsite training

Slides © 2016 Marty Hall, hall@coreservlets.com

Questions?
More info:

http://www.coreservlets.com/javascript-jquery-tutorial/ -- Tutorial on JavaScript, jQuery, and jQuery UI
http://courses.coreservlets.com/Course-Materials/java.html – General Java programming tutorial

http://www.coreservlets.com/java-8-tutorial/ – Java 8 tutorial
http://courses.coreservlets.com/java-training.html – Customized Java training courses, at public venues or onsite at your organization

http://coreservlets.com/ – JSF 2, PrimeFaces, Java 8, JavaScript, jQuery, Ext JS, Hadoop, RESTful Web Services, Android, HTML5, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training
Many additional free tutorials at coreservlets.com (JSF, Android, Ajax, Hadoop, and lots more)

