
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

JSF: Managed Beans
Originals of Slides and Source Code for Examples:

http://www.coreservlets.com/JSF-Tutorial/

This somewhat old tutorial covers JSF 1, and is left online for those maintaining existing projects. All new projects
should use JSF 2, which is both simpler and more powerful. See http://www.coreservlets.com/JSF-Tutorial/jsf2/.

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live training on JSF 1 or 2, please see
courses at http://courses.coreservlets.com/.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public
venues, or customized versions can be held on-site at

your organization.
• Courses developed and taught by Marty Hall

– JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 6 or 7 programming, custom mix of topics
– Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, etc.) or survey several

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, EJB3, GWT, Hadoop, SOAP-based and RESTful Web Services

Contact hall@coreservlets.com for details

Topics in This Section

• Using beans to represent request
parameters
– Data that came from the form submission

• Using beans to store results data
– Data that came from the business logic

• Referring to beans in input forms
• Outputting bean properties

– Standard JSF approach
– JSP 2.0 expression language

5

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Background: Beans

What Are Beans?

• Java classes that follow certain conventions
– Must have a zero-argument (empty) constructor

• You can satisfy this requirement either by explicitly
defining such a constructor or by omitting all constructors

– Should have no public instance variables (fields)
• I hope you already follow this practice and use accessor

methods instead of allowing direct access to fields
– Persistent values should be accessed through methods

called getXxx and setXxx
• If class has method getTitle that returns a String, class is

said to have a String property named title
• Boolean properties use isXxx instead of getXxx

– Unlike in Struts, JSF beans need extend no special class
• In JSF world, these are sometimes called "backing beans"

– Beans that represent the form (form parameters, action controller
methods, event handling methods, placeholders for results data).

7

Why You Should Use Accessors,
Not Public Fields

• To be a bean, you cannot have public fields
• So, you should replace

public double speed;

• with
private double speed;

public double getSpeed() {
return(speed);

}
public void setSpeed(double newSpeed) {

speed = newSpeed;
}

• You should do this in all your Java code
anyhow. Why?

8

Why You Should Use
Accessors, Not Public Fields

• You can put constraints on values

public void setSpeed(double newSpeed) {
if (newSpeed < 0) {

sendErrorMessage(...);
newSpeed = Math.abs(newSpeed);

}
speed = newSpeed;

}

– If users of your class accessed the fields directly, then
they would each be responsible for checking constraints.

9

Why You Should Use
Accessors, Not Public Fields

• You can change your internal
representation without changing interface

// Now using metric units (kph, not mph)

public void setSpeed(double newSpeed) {
speedInKPH = convert(newSpeed);

}

public void setSpeedInKPH(double newSpeed) {
speedInKPH = newSpeed;

}

10

Why You Should Use
Accessors, Not Public Fields

• You can perform arbitrary side effects

public double setSpeed(double newSpeed) {
speed = newSpeed;
updateSpeedometerDisplay();

}

– If users of your class accessed the fields directly, then
they would each be responsible for executing side effects.
Too much work and runs huge risk of having display be
inconsistent from actual values.

11

Beans Should Be Serializable
(If they will ever be session-scoped)

• Some servers support distributed Web
applications
– Load balancing used to send different requests to different

machines. Sessions should still work even if different hosts are hit.

• Some servers suport persistent sessions
– Session data written to disk and reloaded when server is restarted

(as long as browser stays open).
• Tomcat 5 and 6 support this

• To support both, beans that will be session-scoped
should implement the java.io.Serializable interface
– There are no methods in this interface; it is just a flag:

public class MyBean implements Serializable
...

}

– Builtin classes like String and ArrayList are already Serializable
12

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Updated Flow

JSF Flow of Control (Updated)

14

Blah.jsp
(Runs bean getter methods)

submit form
POST request Blah.faces

Instantiate
Bean

return
condition

Choose
JSP

Run Action
Controller Method

forward result1.jsp
result2.jsp
...
resultN.jsp
(Use h:outputText
to display bean
properties)

Run Setter
Methods

faces-config.xml
- beans declared in managed-bean section
- mapping of return conditions

declared in navigation-rule section

Business
Logic

Store results of business
logic in bean

results

JSF Flow of Control (Simplified)

• A form is displayed
– Form uses f:view and h:form

• Bean instantiated†. If bean getter methods return non-empty,
values filled in textfield

• The form is submitted to itself
– Original URL and ACTION URL are http://…/blah.faces

• A bean is instantiated†

– Listed in the managed-beans section of faces-config.xml
– The setter methods given in h:inputText (etc.) are executed

• Values passed to setter methods are the values in textfields
when form is submitted

• The action controller method is invoked
– Listed in the action attribute of h:commandButton

• The action method returns a condition
– A string that matches from-outcome in the navigation rules in

faces-config.xml
• A results page is displayed

– Page uses h:outputText to output bean properties
15

†Assumes bean is
request-scoped

Steps in Using JSF

1) Create a bean
A) Properties for form data
B) Action controller method
C) Placeholders for results data

2) Create an input form
A) Input fields refer to bean properties
B) Button specifies action controller method that will return condition

3) Edit faces-config.xml
A) Declare the bean
B) Specify navigation rules

4) Create results pages
– Output form data and results data with h:outputText

5) Prevent direct access to JSP pages
– Use a filter that redirects blah.jsp to blah.faces

16

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Example

Example: Using Beans

• Original URL:
– http://hostname/jsf-beans/register.faces

• When form submitted, three possible results
– Error message re illegal email address
– Error message re illegal password
– Success

• New features
– Action controller obtains request data from within bean
– Output pages access bean properties

• Main points
– Defining a bean with properties for the form data
– Declaring beans in faces-config.xml
– Outputting bean properties

18

Main Points of This Example

• Add two new sections to the beans
– Properties (getter/setter pairs) for request parameters
– Placeholders for results data
– (Still have action controller method as before)

public class MyBean {
public String getCustomerId() {…}
public void setCustomerId(String id) {…}
public String doBusinessLogic() {…}
public String getBalance() {…}

}

• Use h:inputText to associate textfield with property
<h:inputText value="#{beanName.propertyName}"/>

• Use h:outputText to output bean properties
<h:outputText value="#{beanName.propertyName}"/>

19

Assume textfield refers to
customerId property.

Assume balance is calculated
by business logic based on the
customer id.

Step 1: Create a Bean

(A) Properties for form data
– Pair of getter/setter methods for each request parameter

• If input form says value="#{name.foo}", then bean
should have getFoo and setFoo methods.

– When form first displayed
• Bean instantiated (assuming request scope)
• Getter methods called (e.g., getFoo in above example)
• If result is something other than null or empty String, value

is placed into textfield
– I.e., textfields are prepopulated with bean default values

– When form submitted
• A new copy of the bean is instantiated

– (assuming request scope)
• Values from textfields passed to setter methods

– E.g., setFoo in above example
• Strings converted to other types as with jsp:setProperty
• Form redisplayed if there are errors: see validation section

20

Step 1: Create a Bean
(Continued)

(B) Action controller method
– Method can directly access bean properties

• Since controller is inside same class that stores the
request parameters

– Different from Struts, where one object stores the request data (the
form bean that extends ActionForm) and a different object has the
controller (the class that extends Action and has execute)

– Method also invokes business logic, takes results, and
stores them in placeholders reserved for output values

(C) Additional properties for output values
– Filled in by the action controller method

21

Step 1: Example Code

(1A) Form data

public class RegistrationBean implements Serializable {
private String email = "user@host";
private String password = "";

public String getEmail() {
return(email);

}

public void setEmail(String email) {
this.email = email;

}

public String getPassword() {
return(password);

}
public void setPassword(String password) {
this.password = password;

}

22

If you expect to ever
make bean session-scoped

Step 1: Example Code

(1B) Action controller method

public String register() {
if ((email == null) ||

(email.trim().length() < 3) ||
(email.indexOf("@") == -1)) {

suggestion = SuggestionUtils.getSuggestionBean();
return("bad-address");

} else if ((password == null) ||
(password.trim().length() < 6)) {

suggestion = SuggestionUtils.getSuggestionBean();
return("bad-password");

} else {
return("success");

}
}

23

Step 1: Example Code

(1C) Placeholder for storing results
– Note that action controller method called business logic and placed

the result in this placeholder

private SuggestionBean suggestion;

public SuggestionBean getSuggestion() {
return(suggestion);

}

24

Step 1: Example Code
(Result returned by business logic)

package coreservlets;
import java.io.*;

public class SuggestionBean implements Serializable {
private String email;
private String password;

public SuggestionBean(String email, String password) {
this.email = email;
this.password = password;

}

public String getEmail() {
return(email);

}

public String getPassword() {
return(password);

}
}

25

Step 1: Example Code
(Business Logic)

package coreservlets;

public class SuggestionUtils {
private static String[] suggestedAddresses =

{ "president@whitehouse.gov",
"gates@microsoft.com",
"palmisano@ibm.com",
"ellison@oracle.com" };

private static String chars =
"abcdefghijklmnopqrstuvwxyz0123456789#@$%^&*?!";

public static SuggestionBean getSuggestionBean() {
String address = randomString(suggestedAddresses);
String password = randomString(chars, 8);
return(new SuggestionBean(address, password));

}
...

}

26

Step 2: Create Input Form

• Similar to previous example, except
– h:inputBlah tags given a value attribute identifying

the corresponding bean property
• Example code
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<f:view>…
<h:form>
Email address:
<h:inputText value="#{registrationBean.email}"/>

Password:
<h:inputSecret value="#{registrationBean.password}"/>

<h:commandButton value="Sign Me Up!"

action="#{registrationBean.register}"/>
</h:form>…
</f:view>

27

Step 2: Result

• File is tomcat_dir/webapps/jsf-beans/register.jsp
• URL is http://localhost/jsf-beans/register.faces
• The user@host value comes from the bean

28

Step 3: Edit faces-config.xml

(A) Declare bean
…
<faces-config>

<managed-bean>
<managed-bean-name>

registrationBean
</managed-bean-name>
<managed-bean-class>

coreservlets.RegistrationBean
</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>
…
</faces-config>

29

Step 3: Edit faces-config.xml

• (B) Define navigation rules
…
<faces-config>
…
<navigation-rule>

<from-view-id>/register.jsp</from-view-id>
<navigation-case>

<from-outcome>bad-address</from-outcome>
<to-view-id>/WEB-INF/results/bad-address.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>bad-password</from-outcome>
<to-view-id>/WEB-INF/results/bad-password.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/WEB-INF/results/success.jsp</to-view-id>

</navigation-case>
</navigation-rule>

</faces-config>
30

Step 4: Create Results Pages

• Use h:outputText to access bean properties

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<f:view>
<!DOCTYPE …>
<HTML>
…
<h:outputText value="#{beanName.propertyName}"/>
…
</HTML>
</f:view>

31

Step 4: Create Results Pages

• …/jsf-beans/WEB-INF/results/bad-address.jsp

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<f:view>
<!DOCTYPE …>
<HTML>
…
<TABLE BORDER=5>

<TR><TH CLASS="TITLE">Illegal Email Address</TH></TR>
</TABLE>
<P>
The address
"<h:outputText value="#{registrationBean.email}"/>"
is not of the form username@hostname (e.g.,
<h:outputText

value="#{registrationBean.suggestion.email}"/>).
<P>
Please try again.
…
</HTML>
</f:view>32

Step 4: Example Result for Bad
Email Address

• Input

33

Step 4: Example Result for Bad
Email Address

• Output

34

Step 4: Create Results Pages

• …/jsf-beans/WEB-INF/results/bad-password.jsp

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<f:view>
<!DOCTYPE …>
<HTML>
…
<TABLE BORDER=5>

<TR><TH CLASS="TITLE">Illegal Password</TH></TR>
</TABLE>
<P>
The password
"<h:outputText value="#{registrationBean.password}"/>"
is too short; it must contain at least six characters.
Here is a possible password:
<h:outputText

value="#{registrationBean.suggestion.password}"/>.
<P>
Please try again.
…
</HTML>
</f:view>35

Step 6: Example Result for Bad
Password

• Input

36

Step 4: Example Result for Bad
Password

• Output

37

Step 4: Create Results Pages

• …/jsf-beans/WEB-INF/results/success.jsp
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<f:view>
<!DOCTYPE …>
<HTML>
…
<TABLE BORDER=5>

<TR><TH CLASS="TITLE">Success</TH></TR>
</TABLE>
<H2>You have registered successfully.</H2>

Email Address:
<h:outputText value="#{registrationBean.email}"/>

Password:
<h:outputText value="#{registrationBean.password}"/>

…
</HTML>
</f:view>

38

Step 6: Example Result for
Good Input

• Input

39

Step 6: Example Result for
Good Input

• Output

40

Step 5: Prevent Direct Access
to JSP Pages

• Use filter that captures url-pattern *.jsp
– No changes from previous example

41

Alternative Approaches

• Preview: using the JSP 2.0 EL
– If output pages only display bean properties (rather than

manipulating a form or using form elements):
• Why bother with f:view and associated taglib declaration?
• Why use h:outputText and associated taglib declaration

when the JSP 2.0 EL is simpler?
– If you use the JSP 2.0 EL, you must:

• Be in a JSP 2.0 container (e.g., Oracle10g, not Oracle9i)
• Use the JSP 2.0 declaration for web.xml (see later section)

• Pros of sticking with JSF
– You might use form elements or I18N or renderers or

custom components or other JSF stuff in the future
– h:outputText escapes < and > with < and >

• Pros of using EL
– Shorter, simpler, more readable, already familiar

42

Using the JSP 2.0 Expression
Language

• Standard JSF approach
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<f:view>
<!DOCTYPE …>
<HTML>
…
<TABLE BORDER=5>
<TR><TH CLASS="TITLE">Success</TH></TR>

</TABLE>
<H2>You have registered successfully.</H2>

Email Address:

<h:outputText value="#{registrationBean.email}"/>
Password:

<h:outputText value="#{registrationBean.password}"/>

…
</HTML>
</f:view>

43

Using the JSP 2.0 Expression
Language

• JSP 2.0 approach
– Omit taglib declarations and f:view tags
– Shorten expression that outputs bean properties

<!DOCTYPE …>
<HTML>
…
<TABLE BORDER=5>
<TR><TH CLASS="TITLE">Success</TH></TR>

</TABLE>
<H2>You have registered successfully.</H2>

Email Address: ${registrationBean.email}
Password: ${registrationBean.password}

…
</HTML>

44

Looking Ahead

• Algorithm for password length was clumsy
– Nice to have builtin checking for textfield lengths
– Already supported in JSF

• See validation section

• Algorithm for checking legal email
addresses was primitive and easily fooled
– Nice to have builtin checking of valid addresses
– Supported in MyFaces via Tomahawk extensions

• See section on MyFaces extensions

• If both password and email were wrong,
only one was reported
– Error pages for bad input results in too many error pages
– Better to redisplay form and say what was wrong

• See section on validation
45

Summary

• Create a bean
– Properties for each request parameter
– Action controller method
– Placeholders to hold results objects

• Refer to bean properties in input form
– <h:inputText value="#{beanName.propertyName}"/>

• Declare bean in faces-config.xml
– Use managed-bean declaration
– Bean lifecycle (assuming request scope)

• Instantiated when form first displayed
– Getter methods called for initial textfield values

• Instantiated again when form submitted
– Setter methods called for each input field
– Action controller method called after setter method

• Use h:outputText to output bean properties
– The JSP 2.0 expression language is also possible46

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

