
Customized Java EE training at your location: JSF 2, PrimeFaces, Hadoop, general Java programming, Java 8 lambdas/streams, jQuery, Android, Spring MVC, GWT, REST, etc. 
For sample tutorials and public courses, see http://www.coreservlets.com/. To inquire about onsite courses, email hall@coreservlets.com.

Exercises: Managed Beans I

Make a new Dynamic Web Project based on the jsf-blank project or on your project from the previ-
ous exercises. If you copy an existing project, don’t forget to update the new project as described 
earlier (go to the file system or Eclipse Navigator and edit eclipseWorkspace/yourNewProject/.set-
tings/org.eclipse.wst.common.component and change the instances of the old project name to the 
new one). Close the Navigator when done.

Again, remember that there is a “samples” folder inside of jsf-blank that has templates of the very 
basic layout of JSF pages. You can copy and rename one of those template files and use it as a start-
ing point for your .xhtml files.

The most important problem is #2: using business logic, so that your output page shows something 
that was not supplied by the user, but rather was calculated based on the user input. The first prob-
lem is a warmup along the way to that goal.

1. Make a form to gather an employee name, employee ID, and the name of a health plan to sign 
up for. If all three values are present (i.e., are something other than empty strings), display a 
confirmation page that says “You are registered for the health plan” and that shows the name, 
ID, and health plan. If any of the inputs are missing, display a page that says “Missing Input 
Data”. 

Note that you should make the employee ID be a String, not an int. JSF can do type conver-
sion, but if you make use of this capability, you need to handle the case when the user enters 
something in an illegal format, and we won’t know how to do that until the validation lectures. 
So, for now, just make the employee ID a String (e.g. “a1234” or simply “1234” as a String, 
not an int).

2. Make a new form that works similarly to the old one. This time, however, verify that the 
health plan entered is really one of the available health plans. Give an error message (e.g., 
“CMS Prime is not an available health plan”) for unknown health plans. In the confirmation 
page, also show the monthly premium and contact phone number for that health plan (in addi-
tion to the data shown earlier). This requirement means that you need some simple business 
logic to map a health plan name to a HealthPlan object. To simplify this part of the exercise, 
feel free to steal HealthPlan (represents a plan), HealthPlanFinder (interface for finding a plan 
from a name), and SimpleChoicesHealthPlanFinder (concrete version of interface that has a 
few hard-coded plans) from my managed-beans-1-exercises project.


