
Customized Java EE training at your location: JSF 2, PrimeFaces, Hadoop, general Java programming, Java 8 lambdas/streams, jQuery, Android, Spring MVC, GWT, REST, etc. 
For sample tutorials and public courses, see http://www.coreservlets.com/. To inquire about onsite courses, email hall@coreservlets.com.

JSF 2 Exercises: Validation Part 2

1. Make a Website registration page where a user signs up by choosing a username and 
password. Have the user enter the password twice. Enforce that the password exists, 
the password is at least 6 characters long, and that the second password entry 
matches the first. This process is slightly easier if you use h:messages to put all the 
error messages at the top, but it is not too hard to put the error messages next to the 
fields: just give the form an id and then use “formId:fieldId” as the first argument to 
context.addMessage.

2. For the password, reject "password", "123456", "12345678", "qwerty", and 
"abc123". You could fold this test into the manual validation code from the first prob-
lem, but imagine that you might want to enforce this rule for more than one form, so 
instead use a custom validator method or component. Note that if you are putting 
error messages next to the fields, there is no need to specify the field ID in the valida-
tion method: it will automatically be associated with whichever field used “valida-
tor=” to specify the custom validation method.

3. Make a form where you nominate an employee for an award. The form should collect 
only a name (non-empty), and the confirmation should simply show the name. Make 
your app support at least one language in addition to English. You can take the lan-
guage from the browser settings as in the Properties exercises, or you can add in con-
trols to let the user choose the language, as in the lecture on handling GUI events, or 
you could even choose the Locale at random, as you did in one of your exercises on 
using Properties. Any of these approaches is fine; the point here is to be sure that the 
validation error message reflects the current language. If you don’t speak any other 
languages, use translate.google.com or babelfish.com. You could also just use 
dummy values like “Name (FRENCH):”.

4. Make a form where a user can sign up to be on a high-volume spam email list (yay!). 
Have the user enter an email address and two favorite URLs (so that the spammers 
can customize the emails based on the user’s interests). Make sure the email 
addresses and URLs are in valid formats, and be sure that the two URLs are not the 
same. For checking that the URLs are different, use the MyFaces commons tag, not 
manual validation, and use “ne” (not equals) as the operator. Also, for the second 
URL you need to check both that it is a valid URL and that it is different than the first 
URL. So, you cannot use the validatorMessage attribute of h:inputText. Instead, use 
the message attribute of the MyFaces tags themselves, like this:
<mcv:validateBlah message="..."/>


